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Abstract

Deep learning has proven incredibly successful in a plethora of fields. In computer vision, deep neural

networks are now the state-of-the-art for a variety of tasks. At the first glance, steganography and

steganalysis appear to be very much di�erent tasks than classical computer vision tasks, yet deep

learning, especially convolutional neural networks, popularized by the computer vision field, have

outperformed all classical feature-based approaches for detecting steganography.

Intuitively, steganographic embedding changes are weak, noise-like signals executed primarily in

complex content, such as textures and edges. Since computer vision classifies and categorizes content,

it is also suitable for detecting the presence of noise-like stego signals modulated by content.

In this dissertation, we focus on refactoring steganography detectors with more modern and general

components, qualitatively understanding their strengths and failure cases, and using them algorith-

mically to improve steganography. First, we show that many custom ingredients long believed to

be necessary for successfully training a deep neural network for steganography detection can be

omitted in favor of more general-purpose convolutional architectures with very few domain-specific

changes. Next, we focus on understanding what makes deep neural networks superior to their classi-

cal feature-based predecessors. Lastly, we use these powerful steganography detectors as a feedback

loop in novel batch steganography algorithms, which allocate more payload in images where state-

of-the-art detectors fail to detect steganography.
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Preface

Deep Learning is ubiquitous in steganography and steganalysis. Convolutional Neural Networks

(CNNs), in particular, clearly outcompete the previous generation of steganography detectors, the

so-called Rich Models. During his four years of Ph.D. studies at Binghamton University, the author’s

research focused on advancing state-of-the-art of steganography and steganalysis using Deep Learn-

ing models and understanding their strengths and weaknesses. This dissertation is written as the

final requirement of the author’s Ph.D. degree and describes in detail selected author’s peer-reviewed

and published contributions.

In Chapter 1, we introduce the fundamental concepts in steganography and steganalysis. We describe

the evolution of Machine Learning and Deep Learning techniques from the early feature-based ste-

ganalysis to the more recent CNN architectures trained in an end-to-end fashion using large datasets

with minimal domain-specific elements.

While believed to universally outperform Rich Models, CNNs were shown to struggle in some settings

of JPEG steganalysis. Chapter 2 describes this intriguing failure and proposes a practical solution

based on the so-called OneHotConv layer.

Chapter 3 also challenges the common belief that CNNs for JPEG steganalysis should be trained

separately for each Quality Factor. It shows that similar performance can be obtained by training

CNNs on an entire range of JPEG qualities, which drastically cuts down the complexity of building

practical JPEG steganography detectors.

The ALASKA II steganalysis challenge hosted by Kaggle saw the rise of a new type of detectors,

computer-vision CNNs pretrained on ImageNet and refined for steganalysis. Chapter 4 describes

these detectors, which significantly outperformed the state-of-the-art network for steganalysis, the

SRNet. These detectors were trained without the so-called Pair Constraint, also believed to be a

crucial element for training CNNs for steganalysis. They were also trained on an even larger range

of JPEG qualities than prescribed in Chapter 3.

Chapter 5 shows that ImageNet pretrained models can gain even more from targeted modifications

of their architectures: disabling strides in the first layer and inserting a number of unpooled and
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unstrided convolutions in their early layers. The modified architectures outperform the state-of-the-

art in steganalysis on a range of datasets and steganographic algorithms.

In Chapter 6, we ask the question “What makes these CNNs significantly outperform the Rich Mod-

els?” We show that unlike Rich Models which operate on macroscopic quantities of local statistics,

CNNs can leverage highly localized artifacts left by steganography.

With these great steganography detectors in hand and a better understanding of their strengths and

weaknesses, Chapter 7 proposes new detector-informed batch steganography algorithms, which use

feedback from state-of-the-art detectors to spread the secret payload across multiple cover images.

Chapter 7 also pays close attention to the impact of the information available to the Warden and to

her pooling strategies for a more comprehensive assessment of security.

The dissertation is concluded in Chapter 8.
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Chapter 1

Introduction and preliminaries

Steganography is the art of covert communication when secrets messages are communicated in

ordinary looking cover objects. The goal is to make steganographic communication indistinguishable

from regular exchange of information during which no secrets are passed between communicating

parties. To do so, the sender hides the message in a cover object while taking good care of keeping

it innocuous. Digital media, such as images, are particularly suitable cover objects because of their

ubiquity and because they can be slightly modified without changing their appearance, potentially

thus able to hold large messages.

The task of detecting the presence of steganography is called steganalysis. In the case of image

steganography, it is performed by inspecting statistical properties of the intercepted images and

comparing them to statistical properties of innocent cover images. Image steganalysis is a rather

di�cult task because natural images contain many indeterministic components due to the acquisition

conditions and to the high diversity and complexity introduced during development from the raw

capture, post-processing, editing, saving, and even sharing.

1.1 Steganographic channel

There are three main approaches for covert communication: steganography by cover modification,

cover synthesis, and cover selection [3]. This dissertation will only consider steganography by cover

modification.

Steganography is often described using the prisoners’ problem. Alice and Bob are allowed to com-
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Figure 1.1.1: Steganographic channel.

municate but all messages they exchange are closely monitored by warden Eve looking for data

potentially hidden in their communication [4]. Once Eve detects the mere presence of steganogra-

phy, the channel is considered compromised.

We also adopt the Kerckho�s’ principle, which assumes that Eve knows everything about the stegano-

graphic channel apart from the secret key. This includes the hiding algorithm, the cover source (but

not the cover image used by Alice), the message source and size (but not the exact message). The

Kerckho�s’ principle is often used as a worst case scenario to measure steganographic security.

A steganographic system consists of a cover source {C, P
(c)}, a message source {M, P

(m)}, a key

source {K, P
(k)}, and embedding and extracting functions Emb and Ext. The pair {�, P

(Ê)} denotes

the set of all possible objects in � equipped with a probability distribution P
(Ê) . The embedding

function Emb : C ◊ M ◊ K æ Y takes a cover object, a message Alice wants to communicate, a

shared secret key and creates a stego object carrying the message y = Emb(x, m, k) œ {Y, P
(y)}.

The extraction function Ext : Y ◊K æ M takes the stego object and secret key to extract the secret

m = Ext(Emb(x, m, k), k). Note that when using Ext, Bob does not need the cover object x to

extract the secret message from y. The steganographic channel is visualized in Figure 1.1.1.

1.2 Image steganography

Most early steganographic systems using digital images were hiding messages in the Least Significant

Bits (LSBs) of the image’s pixel values. In fact a survey of tools capable of hiding data in digital

images available on the internet found that 1024 out of 2863 (36%) were embedding messages by
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Figure 1.2.1: Cover (top) and stego (bottom) images and their LSB plane.

manipulating LSBs [5]. The most primitive way to embed a message in an image is by replacing the

LSBs of the image pixels to match the message in a bitstream form. Alice can also randomly select

which pixel locations to choose from using a secret key kloc shared with Bob.

LSB Replacement (LSBR) is unfortunately very detectable [6; 7; 8; 9; 10]. Another algorithm based

on LSBs is LSB Matching (LSBM), which matches the cover LSB to the message bit by randomly

changing the pixel value by +1 or ≠1. LSBM is generally more secure than LSBR but still very

detectable [11; 12; 13]. It is used as the basis for more secure content adaptive algorithms.

The probability of change of pixel i is called the change rate —i. For a naive implementation of LSBR,

embedding a message of length m bits in an image consisting of n pixels, the expected value of the

change rate is —i = m
2n ( m

n pixels are changed on average with probability 1

2
). Modern steganographic

algorithms make use of coding to improve the embedding e�ciency (bits communicated per embed-

ding changes). The so-called Syndrome Trellis Codes (STCs) [14] are widely used in steganographic
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Figure 1.2.2: HILL costs of an image. Notice the square regions with very large costs, the so called
wet costs, which prohibit embedding changes around very smooth regions of an image.

implementations because they achieve near optimal e�ciency in terms of the Rate-Distortion (RD)

bound

— Ø H
≠1

3
(–), (1.2.1)

where H
≠1

3
is the inverse of the ternary entropy function, which we assume here for simplicity,

assigning the same probability of change —i for +1 or ≠1.

H3(—i) = ≠(1 ≠ 2—i) log2(1 ≠ 2—i) ≠ 2—i log2 —i. (1.2.2)

Steganographic simulators generally assume optimal coding by operating on the RD bound, i.e.

nÿ

i=1

H3(—i) = n–. (1.2.3)

The most popular content-adaptive strategies use heuristically defined costs fli of changing the i-th

cover element. The cost assignment is typically designed experimentally and is usually the central

element of each embedding algorithm. An example of steganographic costs is given in Figure 1.2.2.

The total cost of all executed embedding changes is defined as the distortion

D(x, y) =
nÿ

i=1

fli[xi ”= yi]. (1.2.4)

Decomposing the distortion as a sum of costs of individual changes means that those changes do not
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interact with each other. Embedding changes that interact were proposed in [15; 16; 17]. Also note

that the cost of no change (xi = yi) is zero. In practice, cost based schemes determine the optimal

change rates by solving

min E[D(x, y)] =
nÿ

i=1

fli—i

st
nÿ

i=1

H3(—i) = n–. (1.2.5)

The solution is

—i = e
≠⁄fli

1 + 2e≠⁄fli
, (1.2.6)

where ⁄ is a Lagrange multiplier found using a binary search.

The most popular and secure algorithms include WOW [18], S-UNIWARD [19], and HILL [20] in the

spatial domain and J-UNIWARD [19], UED [21], and UERD [22] in the JPEG domain. Figure 1.2.2

shows HILL costs of an image.

Another approach to steganography called model based steganography [23; 24; 25; 26; 27; 28] imposes

a statistical model on the cover elements p
(c)

i and minimizes the e�ect of steganography on the model

measured using Kullback–Leibler divergence:

min DKL(p(c)||p(y)) =
ÿ

i

DKL(p(c)

i ||p(y)

i (—i))

st
nÿ

i=1

H3(—i) = n–. (1.2.7)

A tangential body of work considers the batch steganography problem [29; 30; 31; 32; 33; 34; 35],

which consists of sending a bag of B images instead of a single image. Batch steganography gives an

opportunity to spread the payload in a more adaptive fashion, i.e. embed more payload in textured

and complex images, and less payload in smooth images.
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1.3 Image Steganalysis

In the most general way, the steganalysis problem Eve faces can then be formulated as a binary

hypothesis testing

H0 :x ≥ P
(c)

, (1.3.1)

H1 :x ≥ P
(y)

. (1.3.2)

However, Eve does not know P
(c) nor P

(y) since covers and stegos live in the complicated high

dimensional space of natural images. In practice, Eve’s detector is a binary mapping f : X fi Y æ

{0, 1} where 1 is predicting that the intercepted image is a stego image. Eve estimates (or learns) f

using a data driven approach which will be explained in more details in 1.4.

Note that in some special cases, equivalents of P
(c) and P

(y) can be derived or approximated [36;

37; 38; 11; 39; 40; 41], in which case Eve’s best detector is a Likelihood Ratio Test (LRT) following

the Neyman–Pearson lemma.

In this dissertation, we will measure the performance of Eve’s detectors using the following scalar

descriptors:

• The minimum probability of error under equal priors.

PE = 1
2 min(PFA + PMD), (1.3.3)

where PFA stands for the probability of False Alarm (detecting a cover image as stego) and PMD =

1 ≠ PD stands for the probability of Missed Detection (detecting a stego image as cover).

• The Missed Detection rate at 5% False Alarm rate (MD5), which was proposed as a metric in

the ALASKA I steganalysis challenge [42]

MD5 = PMD(PFA = 5%). (1.3.4)

• The False Alarm rate at 50% Missed Detection rate (FP50), which was also proposed as a

metric in the ALASKA I steganalysis challenge

FP50 = PFA(PMD = 50%). (1.3.5)
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Figure 1.3.1: ROC curve of a detector and its’ performance metrics. wAUC = 0.9305 which is
the sum of the dark shaded blue area weighted 2◊ and the light shaded blue area. PE = 0.1749
which can be found using the point where a line with unit slope is tangent to the ROC curve (blue).
MD5 = 0.3590 (red) and FP50 = 0.0178 (green).

• The weighted Area Under the Curve (wAUC) which is a weighted area under the Receiver

Operating Characteristic (ROC) of a detector, which was proposed as a metric in the ALASKA

II steganalysis challenge [43]

wAUC =
1ˆ

0

w(PD(PFA))PD(PFA)dPFA, (1.3.6)

Where w(PD) Ã 2 if PD < 0.4 and w(PD) Ã 1 if PD Ø 0.4 with a multiplicative factor

normalizing the wAUC to be in the interval [0, 1].

1.4 Machine Learning in Steganography and Steganalysis

Using her Kerckho�s power, Eve collects a finite dataset D(X ) of cover objects and uses Emb and

the knowledge of the payload size (usually using simulators of embedding algorithms) to build a

labeled dataset of cover and stego images D(X , Y) . Given an error score e from those listed in 1.3,
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Eve wishes to find the best detector f

argminfœF E[e(f)], (1.4.1)

where the expectation is taken over all possible collected datasets D(X , Y). Note that Eve specifi-

cally optimizes for a given cover and stego source (X , Y). If facing a di�erent source, the detector

found using 1.4.1 will likely underperform. This phenomenon is known as the cover/stego source

mismatch [44; 45; 46; 47; 48; 49; 50].

Given that the space of all possible detectors F is di�cult to navigate, Eve will use parametric

detectors f◊ and solve the minimization problem 1.4.1 over the parameter vector ◊. Moreover, early

data driven approaches used fixed feature representations of images g : X fi Y æ Rd where d is

the dimensionality of the feature space. The final detector is f◊ ¶ g which is the composition of

the feature representation (fixed) and the classifier. Feature vectors g were heuristically crafted to

increase the power of the stego signal relative to natural image content and noise.

Early machine-learning steganalyzers used separable Quadrature Mirror Filters (QMFs), Fisher Lin-

ear Discriminant analysis (FLD), and Support Vector Machine classifiers (SVM) [51; 52; 53] as

classifiers. Similar techniques were also used for detection of watermarks [54]. A set of 23 fea-

tures was then introduced for steganalysis in the JPEG domain [55] based on global and mode-wise

histograms, co-occurrence histograms, and ad-hoc blockiness measures.

Sample transition probability matrices were proposed for JPEG steganalysis in [56; 57], which model

JPEG coe�cients as a Markov random process. A spatial-domain equivalent was described by Zo [58]

and Pevn˝ [59; 60]. To further improve steganalysis, features combined across di�erent domains were

proposed (the Cross-Domain Features CDF) [61].

The switch from transition probability matrices (conditional probabilities) to joint distributions (co-

occurrences) began with attempts at steganlyzing HUGO [62], which aspired to preserve a very

high dimensional feature formed by 3D co-occurrences. The BOSS competition spurred further

development in steganalysis, which began the trend of feature “richification” that culminated in the

design of rich media models [63; 64; 65; 66; 67; 68; 69] with simple classifiers [70; 71; 49; 72; 73].

Rich models were also extended to color images [74; 75; 76].

Feature sets were also proposed to target specific content-adaptive stego schemes, unlike the above

cited methods which are general (blind) and do not incorporate any knowledge of the stego scheme

they target besides from the collection of D(X , Y). The first targeted feature vector, the thresholded
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SRM [77], was specifically designed to attack the content-adaptive scheme WOW. General selection-

channel-aware features, the maxSRM and maxSRMd2 were introduced in [78] and later in [79]. SCA

features use the estimated embedding change probabilities —̂i from the analyzed image. Note that

these change probabilities are generally disturbed by steganography, i.e. if Eve analyzes a cover image

—̂i = —i but if Eve analyzes a stego image —̂i ”= —i. SCA features for JPEG steganography were later

introduced in [80] specifically for steganalysis of modern content-adaptive JPEG steganography (J-

UNIWARD and UED). JPEG-phase-aware features (DCTR, PHARM, and features extracted using

Gabor filters) were described in [81; 82; 83].

Other improvements that followed was the application of non-linear feature transformation of fea-

tures [84].

The concept of calibrating features for JPEG steganalysis was introduced specifically to attack

F5 [85]. It was later generalized [86], and attempts were made to port calibration to the spatial

domain [13].

Feature based steganalysis generally follows the same design pattern:

• A noise extraction step which suppresses the image content, using high pass filters such as the

KV filter (Equation 1.4.2), KB filter (Equation 1.4.2), Sobel filter, wiener filter, etc. [65; 87]

• A quantization step which narrows the noise residual’s dynamic range,

• Co-occurence matrices formation in the horizontal, vertical, diagonal directions,

• Classifier [88; 70; 73; 89; 72], trained on the collected dataset D(X , Y)

gKV =

S

WWWWWWWWWWU

≠.0833 +.1667 ≠.1667 +.1667 ≠.0833

+.1667 ≠.5000 +.6667 ≠.5000 +.1667

≠.1667 +.6667 ≠1.0000 +.6667 ≠.1667

+.1667 ≠.5000 +.6667 ≠.5000 +.1667

≠.0833 +.1667 ≠.1667 +.1667 ≠.0833

T

XXXXXXXXXXV

(1.4.2)

gKB =

S

WWWWU

≠1 +2 ≠1

+2 ≠4 +2

≠1 +2 ≠1

T

XXXXV
(1.4.3)

More recent steganalysis detectors were built using Deep Neural Networks (DNNs) with the goal to

blend in the feature extraction algorithm g into f◊ as much as possible. In other terms, learn the
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classifier and the feature extraction jointly. Most work focused on Convolutional Neural Networks

(CNNs) for their reduced computational cost and their suitability for image processing [90]. CNNs

were first used in steganalysis in [91] with a stacked convolutional auto-encoder network. A CNN

with a fixed KV filter preprocessing step was first used in [92], the authors observed that the fixed

high pass filter layer was necessary to train their proposed network.

XuNet [93] also used a fixed high pass filter layer. YeNet [94] which improved the detection power

drastically over XuNet, also had manually initialized filters in the first layer with SRM filters. The

first Residual Neural Network (ResNet) applied to steganalysis [95] also used the fixed KV filter as

a preprocessing layer and also improved upon the XuNet.

For JPEG domain steganalysis CNNs were prepended with the DCT basis as a feature extraction

layer [96; 97]. Splitting features by their JPEG phase was also used in the JPEG phase-aware

networks [98].

SRNet [99] was the first CNN to achieve state of the art performance in both JPEG and spa-

tial domain steganography without any domain specific tricks besides the architectural design of

preserving the input resolution using several layers of unpooled convolutions, which proved very

powerful. Later work focused on making more e�cient CNNs for steganalysis using more e�cient

design choices [100; 101; 102], or by pruning existing architectures [103].

Neural Architecture Search (NAS) [104] was also successfully used to automatically design CNN

architectures [105; 106], but at the expense of a very large computational cost.

While most proposed DNN steganlyzers were tested by training on a single cover/stego source

D(X , Y) defined by a cover dataset, stego scheme and payload, other work studied the e�ect of

diversifying the stego source by creating a dataset using multiple stego schemes [107; 108], or diver-

sifying the cover source by training detectors on multiple JPEG quality factors [109], or multiple

image sizes [110; 111].

Careful thoughts were also given to data augmentation for steganalysis [112; 113; 114; 115] and the

e�ect of the dataset size on performance [116].

The first failure of vanilla CNNs in JPEG steganalysis was discovered in [1], where CNNs were

consistently underperforming for detection of nsF5 [117; 118]. The proposed OneHotConv was

designed to operate directly on the DCT coe�cients and overcome the failures of CNNs trained on

decompressed JPEG images.
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Figure 1.4.1: Outputs of SRNet’s Layer 7 visualized as 16 grayscale images.

More recently, another family of DNN steganalyzers was adopted by the literature, networks pre-

trained on ImageNet [2; 119; 120; 121] after their success in the ALASKA II Kaggle competition [43].

These networks were originally designed for computer vision tasks and pretrained on the large Im-

ageNet dataset [122] (1.2M images belonging to 1,000 mutually exclusive classes). ImageNet pre-

trained CNNs were also successful in image forensics tasks [123; 124; 125; 126].

In [2] the authors also observed that the Pair Constraint (enforcing the mini batches to include

pairs of cover-stego images while training the network), previously seen as an essential element for

steganalysis DNN training, was not needed when using carefully pretrained models. Moreover, not

using it improved performance of their detectors.

CNNs are seen today as a superior detector family. Unlike Rich Models, the feature extraction

and the classification are jointly learned end-to-end. In essence, CNNs extract noise residuals and

build detection on top of them. Figure 1.4.1 shows the output of SRNet’s Layer 7 visualized as 16

grayscale images. Notice how the outputs resemble noise residuals and edge detectors.

CNNs are also believed to see local artifacts introduced by steganography, unlike Rich Models

(histogram based) which only leverage the e�ect of steganography in it’s integrated form over the

11



entire image. This claim has been experimentally studied in [127].

1.5 Digital Images

1.5.1 The camera model

Given an incident light intensity I, the raw pixel values X follow the camera model

X = (1 + K)I + � + � (1.5.1)

where K is the PRNU [128; 129; 130], � is a combination of other noise sources including the dark

current, shot noise, and read-out noise, and � is the quantization noise [131].

The raw image X is then fed the processing pipeline to produce the final image. The processing

pipeline in digital cameras varies significantly with di�erent camera types and manufacturers, which

makes digital images a great source of cover objects, due to their complexity. A typical image pro-

cessing pipeline includes signal quantization, white balance, demosaicking, color correction, gamma

correction, filtering, and, usually, JPEG compression.

The strongest noise source in steganography and steganalysis applications is the shot noise. It

is usually approximated using the heteroscedastic model [132; 133]. In order to be undetectable,

steganography tries to preserve the statistical properties of the image noise. Natural Steganogra-

phy [134; 135] uses the heteroscedastic model explicitly to hide a message by simulating a switch

between two ISO settings (but requires the raw image, and strong assumptions on the processing

pipeline).

The e�ect of various processing operations on steganographic security was studied in [44].

1.5.2 JPEG compression

JPEG stands for the Joint Photographic Experts Group that published a format standard in

1992 [136]. It is by far the most used image file format due to its widespread support.

The JPEG compression operations are done on non-overlapping 8 ◊ 8 blocks of the image. For sim-

plicity, the equations will use the notation x = (xij) for one specific 8◊8 block of a grayscale image.

During JPEG compression, the DCT coe�cients, dkl œ R, are obtained using the 2 dimensional

12



Figure 1.5.1: The DCT basis.

DCT transform

dkl = DCT2(x) ,
7ÿ

i,j=0

f
ij
kl (xij ≠ 128) 0 Æ k, l Æ 7, (1.5.2)

f
ij
kl = wkwl

4 cos fik(2i + 1)
16 cos fil(2j + 1)

16 , (1.5.3)

where wk =

Y
__]

__[

1Ô
2
, if k = 0

1, otherwise
,

The DCT coe�cients are then quantized

ckl = [dkl/qkl] (1.5.4)

where qkl are the quantization steps. The quantization steps are stored in in a 8 ◊ 8 quantization

matrix, which is supplied in the header of the JPEG file. Because the JPEG standard allows arbitrary

quantization tables to be used, as long as they are stored in the header of the JPEG file, engineers

and camera makers are free to create their own. However, the JPEG standard recommends a set of
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quantization matrices parametrized by a quality factor Q œ {1, 2, ..., 100} :

q(Q) =

Y
__]

__[

max{1, round(2(1 ≠ Q/100) · q(50))} Q > 50

min{255 · 1, round((50/Q) · q(50))} Q Æ 50
, (1.5.5)

where q(50) is the 50% quality standard quantization table:

q(50) =

S

WWWWWWWWWWWWWWWWWWWWU

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

T

XXXXXXXXXXXXXXXXXXXXV

. (1.5.6)

For color images, the RGB representation is changed to Y CbCr (luminance, and two chrominance

signals) with: S

WWWWU

Y

Cb

Cr

T

XXXXV
=

S

WWWWU

0.299 0.587 0.114

≠0.169 ≠0.331 0.5

0.5 ≠0.419 ≠0.081

T

XXXXV

S

WWWWU

R

G

B

T

XXXXV
+

S

WWWWU

0

128

128

T

XXXXV
(1.5.7)

The luminance Y is processed as above, while the chrominance signals are optionally subsampled (e.g.

4:2:2 chroma subsampling), then transformed using DCT2, and finally quantized with chrominance

quantization matrices, also stored in the header of the JPEG file. The chrominance quantization

steps are usually larger than luminance quantization steps because the human visual system is more

sensitive to variations in brightness than color.

The JPEG compression is one of the most important step in an image processing pipeline. In fact,

the JPEG compression Quality Factor controls the amount of details left in an image, Figure 1.5.3

shows that images compressed with lower quality factors have generally more zeros due to the

stronger quantization. The e�ect of JPEG Quality Factor on steganographic security has been

studied in [137] where it has been shown that the e�ect of the quality factor on security varies

drastically from steganographic algorithm to another, the authors also predicted the trend of that

e�ect using statistical cover models and KL divergence. Other aspects of the JPEG compression,
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Figure 1.5.2: Peak signal-to-noise ratio (PSNR) and the compression level (original file size divided
by compressed file size) between an uncompressed and compressed image using various JPEG Quality
Factors.
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Figure 1.5.3: Histogram of DCT coe�cients of a compressed image using various JPEG Quality
Factors.

such as the type of integer conversion used [138] also have a great impact on steganography. Similar

importance is given to the JPEG compression step in image forensics [139; 140; 141; 142].

1.6 Datasets

This section describes the datasets used in this dissertation. Unless specified otherwise, the datasets

are cover datasets which can be embedded with any steganographic algorithm and payload.
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1.6.1 BOSSbase+BOWS2

BOSSbase 1.01 [143] and BOWS2 [144] (BOSSbase+BOWS2) is the most popular dataset in stegano-

graphy and steganalysis. Originally of size 512◊512, it is usually converted to grayscale and resized

to 256 ◊ 256 using Matlab’s ’imresize’ with default parameters. The dataset was randomly divided

into three sets with 14,000 (BOSSbase+BOWS2) / 1,000 (BOSSbase) / 5,000 images (BOSSbase)

for training, validation, and testing.

1.6.2 ALASKA I

A total of 50,000 full size raw images made available by the ALASKA I [42] organizers. The

developing script supplied by the organizers which enabled to generate several variations of the

ALASKA I dataset.

The ALASKA I TILEbase was created by enforcing the smart crop to always crop “tiles” of size

256 ◊ 256 instead of randomly sampling cropping sizes.

The ALASKA I ARBITRARYbase was created by using uniformly randomly sampling cropping

sizes from {512, 640, 720, 1024}, similar to the final test set used by the organizers.

The training set (TRN), validation set (VAL), and test set (TST) contained respectively 42,500,

3,500, and 3,500 cover images (around 500 cover images were not used because they were corrupted

or failed the processing pipeline).

1.6.3 ALASKA II

The ALASKA II [43] dataset contains 75, 000 raw images developed and processed using a script

similar to the ALASKA I script. The final crop can also be modified to produce images of di�erent

sizes. We will use 2 sizes: 256 ◊ 256 and 512 ◊ 512.

During the ALASKA II competition, the 75, 000 images were split into 3◊25,000 di�erent cover

images compressed with quality factors 75, 90, and 95.

Unlike the ALASKA I dataset, the development scripts and the stego embedding scripts were only

shared after the competition ended.

The training set (TRN), validation set (VAL), and test set (TST) contains respectively 3◊22,000,

3◊1,000, and 3◊2,000 covers.
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Chapter 2

An Intriguing Struggle of CNNs in

JPEG Steganalysis and the

OneHot Solution

While CNN detectors [97; 145; 99] clearly outperform classifiers with hand-crafted feature sets for

steganalysis in both JPEG and spatial domain (see, e. g., the detailed survey [146]), there is recent

evidence that CNNs unexpectedly struggle to perform well in certain cases:

• All ALASKA steganalysis challenge participants [147; 42] consistently underperformed on

nsF5 [55].

• In [137], SRNet [99] does not follow the theoretically predicted trend for nsF5 [55], while all

other tested steganographic schemes follow the model.

• J-UNIWARD [19] is surprisingly best detected in JPEGs obtained with the “Trunc” quan-

tizer [138] by JPEG rich model (JRM) [66] and not a CNN.

Figure 2.0.1 shows the total detection error under equal priors PE for two scenarios in which two

leading CNN architectures for JPEG domain steganalysis, the SRNet and J-XuNet [97], are out-

performed by an older detection paradigm, the JRM model and the ensemble classifier [70]. In

this chapter, we analyze these intriguing failures and address the deficiency with a shallow CNN,

the “OneHot” CNN, that can be plugged into a conventional CNN architecture as a dual branch
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Figure 2.0.1: Detection error PE of SRNet, J-XuNet, and JRM+ensemble for (a) J-UNIWARD 0.4
bpnzac in JPEG trunc source and (b) nsF5 0.2 bpnzac in JPEG round source.

for an end-to-end learnable detector. Methodology for plugging the “OneHot” network into con-

ventional steganalysis CNNs is also introduced for an end-to-end learnable detector with improved

performance.

In Section 2.1, we study SRNet and its variants on nsF5, and link its struggles to the inability to

“see” simple artifacts in the distribution of DCT coe�cients exploited by the JRM. After briefly

reviewing prior art on CNNs with DCT inputs, in Section 2.2 we introduce a shallow “OneHot” CNN

that can be plugged to SRNet and trained in an end-to-end fashion to address the above struggles

(Section 2.3). The chapter is concluded in Section 7.7. Datasets (JPEG round/trunc sources),

performance measures, and some technical aspects of training are detailed in Section 2.5.

2.1 Struggles of CNNs in JPEG steganalysis

Figure 2.0.1 shows that there exist cases where CNNs underperform by a large margin when com-

pared to JRM, which is a rather simple feature set. Examining each JRM sub-model (Figure 2.1.1)

separately reveals that most of the detection performance is due to the sub-model ’Ax_T5’ corre-

sponding to integral co-occurences from absolute values of the DCT plane computed with a clipping

threshold T = 5. CNNs fed with decompressed JPEGs are apparently unable to see artifacts in the

distribution of DCTs, such as the co-occurrence ’Ax_T5’.

Feeding the array of DCTs directly to SRNet, however, failed to produce reliable detection or did

not converge (DNC). We hypothesize that this is due to the fact that, unlike pixels, DCTs are
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Figure 2.1.1: 1 ≠ PE when staganalyzing nsF5 0.2 bpnzac in JPEG round QF100 using individual
JRM submodels and using the entire JRM (dashed line).

Table 2.1: Detection error of SRNet and its two shallower variants using the original and longer
training schedule for nsF5 0.2 bpnzac JPEG round QF 100.

Architecture description Original schedule Longer schedule
SRNet DNC 5.35

SRNet, Layers1-8+Global
Average Pooling+FC (fully

connected)

13.36 9.66

SRNet, Layers8-12+FC 25.46 19.84
JRM 4.17

largely decorrelated and locally heterogeneous, making it harder for the convolutions to extract

relevant image components and noise statistics. Most e�ort in computer vision directed towards

training on DCT inputs has focused on either avoiding the costly JPEG decompression step to

speed-up training [148] or on approximating a CNN trained on spatial-domain inputs [149]. Neither

is relevant for our needs. In [150], a histogram layer is introduced that can compute predefined

higher-order statistics, which would merely mimic the JRM.

In our case, we found out that adjusting the training schedule partially solved the problem with

convergence and loss of performance at the expense of a significantly longer training time. Table 2.1

shows the results of SRNet with DCT inputs for nsF5 0.2 bpnzac in JPEG round QF 100 using the

original training schedule [99] and a longer schedule using a doubled batch-size of 64 and seeding

from a much larger payload 0.4 bpnzac. We also studied shallower versions of SRNet by pruning

di�erent layers to show that this di�culty is not linked to an excessive number of parameters to

learn. Note that when using the Titan Xp GPU, SRNet’s longer schedule takes 5 days to train

compared to 1.2 days for the original training schedule.
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2.2 OneHot CNN

A simple transformation of the input DCT plane (the “clipped one-hot encoding”) before the first

convolution will allow a CNN compute occurrences and co-occurrence histograms. The DCT array

M is first clipped to a threshold T and then transformed to a binary volume of size (T +1)◊H ◊W :

ZH◊W æ {0, 1}(T +1)◊H◊W

M ‘æ

Y
_]

_[

[|M| = t], t œ {0, ..., T ≠ 1}

[|M| Ø t], t = T

Z
_̂

_\

(2.2.1)

where [.] is the (element-wise) Iverson bracket [.]. In fact, one can even find a specific kernel that

will compute a desired histogram. For example, horizontal co-occurrences for coe�cient pairs

(x, y) œ {0, ..., T}2 can be computed by convolving the input volume with the following

convolutional kernel K œ R(T +1)◊3◊3, followed by global average pooling

K =

Y
_______]

_______[

Kt = 0 0 0
0 1 0
0 0 0

, t = x

Kt = 0 0 0
0 0 1
0 0 0

, t = y

Kt = 0R3◊3 else.

(2.2.2)

Inter-block statistics can be designed similarly by using dilated convolutions with rate 8 introduced

in wavelet decompositions algorithms [151], also referred to as “à trous” convolutions widely used in

computer vision [152; 153; 154] as a way to increase the receptive field of convolutional layers.

Figure 2.2.2 shows the overall architecture of the proposed OneHot network. Note that the “clipping”

operation is necessary for memory constraints. Figure 2.2.1 shows how the detection error PE reacts

to di�erent clipping thresholds. While T = 10 seems to be optimal, in practice any T Ø 5 can be

chosen, as improvements recorded for higher thresholds are less than 0.5%. Tuning D1 and D2 also

seems to have a rather minor e�ect on performance. However, setting (D1, D
Õ
1
) = (64, 0) or (0, 64),

i. e., using only dilated convolutions or only vanilla convolutions, respectively, seems to hurt the

detection performance by more than 2%. Table 2.2 shows that the proposed OneHot CNN performs

better than JRM in the two problematic cases studied in this chapter.
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Figure 2.2.1: PE of OneHot CNN on nsF5 0.2 bpnzac in round QF 100 JPEGs for di�erent clipping
thresholds T .
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Figure 2.2.2: OneHot CNN architecture. Di corresponds to the depth of representations at di�erent
layers of the network.

The OneHot CNN is trained with the same training schedule and hyper-parameters as SRNet, and

takes around 13 hours on NVIDIA’s Titan Xp GPU.

2.2.1 Cartesian Calibration

Cartesian calibration [85; 86] is a way to augment any feature set by adopting additional features

computed from a reference image. The reference image is obtained by decompressing the original

image, cropping by four pixels in both directions, and recompressing the cropped image. It has been

shown that cartesian calibration helps nsF5, Jsteg, YASS, and other steganographic schemes [86].

We show that the OneHot CNN can also be augmented with cartesian calibration by adding a

second OneHot branch taking the reference image as input. Both branches are independent until

the fully FC layer, which takes a concatenation of the 2 ◊ 32 representation as inputs. Denoting this
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Table 2.2: Detection error PE of JRM and the OneHot CNN for the two problematic cases: JPEG
round, nsF5 and JPEG trunc, J-UNIWARD for various quality factors and payloads.

QF 100 95 85
Round, nsF5 0.2 0.1 0.2 0.1 0.2 0.1

JRM 4.17 21.99 7.94 27.37 12.2 30.49
OneHot CNN 3.49 20.65 7.90 27.06 11.28 29.95
Trunc, J-UNI 0.4 0.3 0.4 0.3 0.4 0.3

JRM 10.81 19.60 15.38 23.18 17.47 24.49
OneHot CNN 7.36 14.05 14.32 21.55 16.45 22.79

Table 2.3: Detection error PE of ccJRM and the calibrated OneHot CNN for JPEG round, nsF5 for
various quality factors and payloads.

QF 100 95 85
Round, nsF5 0.2 0.1 0.2 0.1 0.2 0.1

ccJRM 2.11 18.03 7.15 26.81 10.80 29.78
ccOneHot CNN 1.39 15.52 6.66 25.75 10.09 29.26

architecture ccOneHot CNN, Table 2.3 shows its superior performance w.r.t. ccJRM.

2.3 OneHot+SRNet

In this section, we show that merging the OneHot network with conventional CNN architectures

produces more universal detectors. We use SRNet to show how these two networks are merged

and how the resulting architecture denoted OneHot+SRNet compares to simply concatenating (a

trained) SRNet’s last layer and JRM features as a feature set and training FLD ensemble. This

strategy is denoted JRM+SRNet.

The OneHot+SRNet is built by merging SRNet and OneHot in a branch-parallel fashion, each branch

B outputs a feature extraction FB (the output of the layer before FCB , the fully connected layer

of branch B) and a binary output pB (the output of the FCB+softmax). FSRNet and FOneHot

are then concatenated and fed to the final FC layer, which outputs pF C , the final classification

probability.

For each component B (SRNet, OneHot, and FC), we use the binary cross-entropy loss: LB =

≠(y log(ps
B) + (1 ≠ y) log(pc

B)), where y is the binary target, and combine the losses as follows:

L =
ÿ

Bœ{SRNet, OneHot, F C}

⁄BLB , (2.3.1)

where ⁄B is a scaling hyperparameter for each branch B weighting the importance of training the
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Table 2.4: Detection error PE for various JPEG quality factors, round/trunc, embedding schemes,
and payloads.

QF 100 95 85
Round, nsF5 0.2 0.1 0.2 0.1 0.2 0.1

SRNet 13.88 30.76 12.63 25.35 11.70 24.39
JRM+SRNet 1.97 18.11 3.50 19.39 3.63 19.42

OneHot+SRNet 1.99 18.55 3.32 19.73 3.50 19.22
Trunc, J-UNI 0.4 0.3 0.4 0.3 0.4 0.3

SRNet 16.37 21.26 30.26 35.82 20.41 26.26
JRM+SRNet 7.62 17.49 14.32 22.87 10.14 17.76

OneHot+SRNet 7.29 13.64 14.18 21.79 10.13 16.16
Round, J-UNI 0.4 0.3 0.4 0.3 0.4 0.3

SRNet 12.52 16.70 17.40 24.39 9.17 14.32
JRM+SRNet 15.32 18.64 17.94 26.74 9.18 14.44

OneHot+SRNet 11.94 16.99 17.52 24.81 8.84 14.04
Round, UED-JC 0.3 0.2 0.3 0.2 0.3 0.2

SRNet 6.96 10.16 10.90 17.56 4.44 7.26
JRM+SRNet 7.69 10.53 10.99 17.86 4.04 7.38

OneHot+SRNet 7.26 10.58 11.35 18.25 4.40 7.58

branch B compared to other branches. The weights can be assigned manually as done in [155; 156;

157], or heuristically modeled as noise parameters and learned as done in [158]. In the following

experiments we set all ⁄B = 1.

Another key element in this merging architecture is making sure that each weight in the network is

only updated once during back-propagation, which is done by “stopping” the gradients at the input

of the merged FC layer, to ensure that the gradients of LF C are not computed w.r.t. to the weights

of SRNet and OneHot.

Table 2.3 shows that this strategy works well in practice. The first two blocks of the table show

that OneHot+SRNet substantially improves SRNet. For nsF5 in JPEG round, the improvement

is comparable to JRM+SRNet. For J-UNIWARD in JPEG trunc, the improvement is consistently

better than JRM+SRNet. The next two blocks show that OneHot+SRNet has comparable detection

performance to SRNet for J-UNIWARD and UED-JC [21] in JPEG round while avoiding some large

degradations of JRM+SRNet (e. g., J-UNIWARD for QF 100 and 95).

In Table 2.5, we show that OneHot+SRNet substantially improves detection in a more diverse

dataset. We use ALASKA v1 256 ◊ 256 tiles as described in 2.5 compressed with JPEG quality

factor 95. As prescribed by the challenge winners [147], the detectors are trained as multi-class and

used as binary detectors. Color channels for SRNet are merged in the first layer by using 3 ◊ 3 ◊ 3

convolution kernels, and the “clipped one-hot encoding” in the OneHot branch is done separately
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Table 2.5: Detection error PE and missed detection rate at 5% false alarm, MD5, for ALASKA v1
when tested against individual stego schemes and their mixture.

ALASKA v1 QF95 SRNet OneHot+SRNet
J-UNI 10.63, 18.34 10.97, 18.20
EBS 8.21, 11.51 8.24, 11.71
UED 10.97, 17.97 12.04, 20.68
nsF5 27.90, 70.86 16.37, 34.02

Mixture 12.96, 25.08 12.01, 20.34

for each channel using the same threshold, producing a volume of size 3(T + 1) ◊ H ◊ W . Note that

for ALASKA v1 we use ⁄SRNet = 4 and ⁄F C = ⁄OneHot = 1 as it gave the best results.

2.4 Discussion and conclusions

While in other fields CNNs have been reported to be underperforming, for example, in solving the

seemingly trivial coordinate transform problem [159], to the best of our knowledge, no prior art

uncovered failings of CNNs in steganalysis. In this work, a new CNN architecture is proposed, the

OneHot CNN, to overcome struggles of CNNs in at least two particular scenarios reported in this

chapter. It is based on the clipped one-hot encoding, which enables computing higher-order statistics

of DCT coe�cients in a flexible learnable manner.

The chapter additionally describes a dual-branch architecture for adding the OneHot CNN to existing

CNNs for steganalysis (SRNet) for an end-to-end trainable detector. This overcomes the reported

struggles while not decreasing the performance in cases when the OneHot branch is not e�ective.

For ALASKA v1 and QF 95, OneHot+SRNet tile detector performs 4.7% better than SRNet in

terms of MD5 by substantially improving the detection of nsF5.

We anticipate that the proposed OneHot architecture will find applications in forensics for detection

of higher-order artifacts in the distribution of DCT coe�cients.

2.5 Setup of experiments

Unless mentioned otherwise, all experiments were executed on the union of BOSSbase 1.01 [143] and

BOWS2 [144] converted to grayscale and resized to 256◊256, the training, validation and testing

splits are compatible with [99; 137]. The “trunc” and “round” sources correspond to images where

the final DCT quantizer in JPEG compression is truncation towards zero and round, respectively.
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In Section 2.3, ALASKA v1 [42] dataset has been used with the scripts adapted to produce 256◊256

crops with JPEG compression only done in the “round” mode. This dataset was randomly divided

into three sets with 42,500 / 3,500 / 3,500 for training, validation, and testing. The splits were made

to be compatible with the datasets used in [147].

The steganographic algorithms used in this chapter are: J-UNIWARD [19], UED-JC [21], EBS [160],

and nsF5 [55], embedded with fixed payloads (BOSS+BOWS2) or adaptive payload based on the im-

age processing history, with priors 0.4, 0.3, 0.15, and 0.15, respectively (ALASKA v1). In ALASKA

v1, color steganography is done by spreading the payload between Y , Cr, and Cb as described in [42]

(Payload repartition among color channels).

2.6 Data augmentation in DCT domain

The first step to using DCT domain inputs in deep learning is to perform data augmentation in the

DCT domain. Rotations by multiples of fi/2 and horizontal/vertical flips can be done in a lossless

fashion directly on the quantized DCT coe�cients C œ ZH◊W thanks to the symmetries of DCT

bases. We denote f8(C) any operation f performed in a block-wise fashion, with a block size of 8,

e. g., T8 is the 8 ◊ 8 block-wise matrix transpose. For simplicity, we introduce J = [(≠1)j ] 0Æi<H
0Æj<W

and I = [(≠1)i] 0Æi<H
0Æj<W

œ {1, ≠1}H◊W , all-ones matrices with a negative sign in odd columns and

rows, respectively. Eqs. 2.6.1 and 2.6.2 show how to vertically flip and rotate by fi/2

Lossless flipV (C) = J § flipV
8

¶ flipV (C) (2.6.1)

Lossless rotfi/2(C) = I § T8 ¶ rot3fi/2

8
¶ rotfi/2(C), (2.6.2)

where § is an element-wise multiplication, and ¶ is the composition operation. All other valid flips

and rotations can be derived in a similar fashion (or as compositions of 2.6.1 and 2.6.2).
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Chapter 3

JPEG steganalysis detectors

scalable with respect to

compression quality

The ALASKA stegnalysis challenge [42] revealed how time and resource demanding it is to train deep

learning steganalysis detectors for the “real world.” A large part of this complexity is due to training

detectors for each JPEG quality factor as done by the winners of the challenge [147]. This approach

is not only fastidious but also not scalable to cover a potentially large number of custom quantization

tables. Since deep learning architectures have shown markedly better performance than classifiers

trained on hand crafted feature sets, in this chapter we explore the topic of building steganalysis

detectors that would cover a wider range of quantization tables to alleviate the computational and

complexity burden associated with having to train a separate detector for each quantization table.

This chapter starts by laying out preliminary definitions and notation, discussing relevant prior art

and describing datasets used, steganographic schemes employed, and steganalysis tools evaluated.

In Section “Scalability w.r.t. JPEG quality,” we provide experimental evidence that CNN detectors

as well as older feature-based detectors are scalable w.r.t. JPEG quality; quantitative comparison

with dedicated detectors is given. In section “Robustness w.r.t. custom quantization tables,” we

look at the problem of mismatched JPEG quantization tables and show that CNN detectors trained

on a range of quality factors do generalize to slightly di�erent custom tables within the same range

when measured with a semi-metric that we introduce for this purpose. In contrast, feature-based
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classifiers trained on the same range of qualities appear to experience a much larger loss. Generalizing

to markedly di�erent tables remains a challenge for both types of detectors. The chapter is concluded

in the last section.

3.1 Relevant prior art

The problem of mismatched JPEG quantization tables has been addressed in [161], where the authors

used the 548-dimensional CC-PEV feature vector and the 22,510-dimensional CC-JRM rich model

to steganalyze nsF5 [117] in di�erent JPEG sources. The authors proposed a semi-metric comparing

quantization tables, and showed that both training on a mixture of JPEG qualities as well as using

the semi-metric to find the best detector from a bank of pre-trained detectors can be used in practice

to steganalyze custom quantization tables without training dedicated detectors. This work does not

show how those detectors trained on a mixture of qualities compare to dedicated detectors.

In [162], the authors use a kernel based feature transformation to adapt CC-PEV and CC-JRM to

mismatched JPEG quantization tables. However, it is unclear how to adapt this transformation to

deep learning detectors where the feature representation is learned.

The mismatch of JPEG quantization tables between training and testing sets is a special case of

what is recognized as the cover source mismatch problem [163; 164]. In [49], it is shown that, for

a fixed feature set (CC-300), simple classifiers, such as the FLD-ensemble, are more robust to the

cover source mismatch. This begs a question of how the mismatch a�ects modern detectors built

using deep learning, which jointly optimize the feature representation and the classifier and are thus

highly non-linear.

In [108], the authors showed that the SRNet (trained as a multi-class detector) is able to contain

the complexity of a diversified stego source. The findings of this paper were used by the winners of

the ALASKA challenge [147] to build detectors for a more diverse stego source. Even though the

ability to generalize to unseen steganographic methods is still a challenge, these results indicate that

properly trained CNNs do have the capacity to deal with diverse sources.

3.2 Datasets

Most experiments in this chapter were executed on images prepared from BOSSbase 1.01 [143] and

BOWS2 [144] each with 10,000 grayscale images resized to 256◊256.
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In Section 3.4.2 the ALASKA v1 [42] 256◊256 “tiles” dataset was used.

When training detectors based on hand-crafted feature sets, the validation set is merged with the

training set and a k-fold cross validation or any other prediction performance estimate can be used

to determine the optimal hyper-parameters.

The steganographic algorithms used in this chapter are: J-UNIWARD [19], UED-JC [21], EBS [160],

and nsF5 [117], embedded with 0.4 and 0.3 bpnzac (BOSS+BOWS2) or adaptive payload based on

the image processing history, with priors fii = 0.4, 0.3, 0.15, and 0.15, respectively (ALASKA v1).

In ALASKA v1, color steganography is done by spreading the payload between between the image

components (Y , Cr, and Cb) as described in Section Payload repartition among color channels in [42].

3.3 Steganalysis feature sets and CNN architecture

3.3.1 Feature based steganalysis

The steganalysis community has come up with numerous feature sets built in di�erent domains

and for di�erent stego algorithms. In this chapter, we work with the popular feature set called

DCTR [81].

The DCTR features are histograms of absolute values of undecimated DCT coe�cients quantized

by

qQ = 8 ◊
3

2 ≠ Q

50

4
. (3.3.1)

The undecimated DCT coe�cients are defined as a set of 64 convolutions indexed by (k, l) with the

DCT bases f
ij
kl described in 1.5.2.

In this chapter, we extend (3.3.1) to custom quantization tables q as

q = 8 ◊ r, (3.3.2)

where r = q £ q(50) is the elementwise division of both matrices, and r corresponds to the average

of all elements of matrix r.

The FLD-ensemble [70] is then used with its default parameters for constructing the detector. When

trained on multiple JPEG qualities, the training dataset corresponds to copies of the same set of

images compressed with each quality.
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Figure 3.3.1: Maximum loss of accuracy of multi-quality SRNets w.r.t. dedicated detectors in
multiple JPEG quality ranges for J-UNIWARD (0.4 bpnzac). Black lines correspond to selected
ranges, widening them (red lines) leads to an increase of this loss.

3.3.2 CNN steganalysis

Recently, the community turned to deep learning for stegnanalysis in an attempt to improve detection

accuracy by jointly optimizing the image representation (features sets) as well as the classifier. Deep

learning architectures, such as [97; 145; 99], have been shown to outperform hand-crafted feature sets

in the JPEG domain. In addition to Chapter 1, a detailed survey on deep learning in steganalysis

can be found in [146].

In this chapter, we use the SRNet [99], a residual [165] CNN with 3◊3 convolution kernels and ReLU

activation functions. The first 8 layers of SRNet are un-pooled, and the next convolutional blocks

are pooled using a 3◊3 averaging layer with stride 2, as well as strided 1◊1 convolutions in the skip

connections. SRNet applies global average pooling in the last pooled layer to a 512 feature map,

which is then Fully Connected (FC) to the classification logits. SRNet is trained with the Adamax

optimizer [166] using various mini-batch sizes adapted to the diversity of the sources, as opposed

to the mini-batch size of 32 initially proposed in [99]. At the time of publishing this work, SRNet

achieved the best overall results for steganalysis in the JPEG domain.

When trained on multiple qualities, each batch is formed by repeatedly uniformly sampling a JPEG

quality factor and selecting a cover-stego pair of that JPEG quality.
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3.4 Scalability w.r.t. JPEG quality

In this section, we investigate whether feature-based and CNN steganalysis can contain the com-

plexity of multiple JPEG quality factors within a single model. Note that quality factors 99 and

100 are not studied in this section because a very reliable JPEG compatibility attack is available for

these qualities [167]. We study the scalability of this attack w.r.t. JPEG quality in 3.4.3.

Starting with small ranges, we compute the maximum loss of accuracy of the detector trained on

the range w.r.t. dedicated detectors trained on individual qualities. The range is then expanded

until we start observing high losses. Figure 3.3.1 shows the results of these experiments.

The selected ranges of quality factors in Figure 3.3.1 show an interesting general rule of thumb. A

range of JPEG quality factors [Qmin, Qmax] can be grouped in a single detector as long as :

qkl(Qmin)/qkl(Qmax) . 2, ’ 0 Æ k, l Æ 7. (3.4.1)

Note that when training SRNet on the range [70, 85] we use mini-batch size 128 due to the increased

diversity introduced by mixing many JPEG qualities. All other ranges are trained using mini-batch

size 64, no scaling of learning rates or the number of training iterations has been performed.

3.4.1 BOSS+BOWS2

Figure 3.4.1 shows the minimum total error probability PE under equal priors for J-UNIWARD (0.4

bpnzac) and UED (0.3 bpnzac) for detectors dedicated to a specific JPEG quality (crosses) and

detectors trained on each bin (range). Both DCTR+FLD-ensemble and SRNet seem to scale to

multiple quality factors with no substantial loss in performance in both stego sources.

SRNet, however, has a significantly better detection accuracy that does not come at the expense of

capacity of scaling to multiple qualities. The “ripples” in performance are explained in [137] and are

due to the rounding and maxing in quantization matrices.

3.4.2 ALASKA

In order to move the experiments to a more realistic setting, we now use the ALASKA v1 dataset to

test the proposed JPEG qualities grouping strategy. We show that the proposed grouping scales to
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(a) DCTR+FLD-ensemble

(b) SRNet

Figure 3.4.1: Minimum error probability PE of multi-quality detectors for J-UNIWARD (0.4 bpnzac)
(left) and UED (0.3 bpnzac) (right) detectors compared to dedicated detectors using DCTR+FLD-
ensemble (a) and SRNet (b). Dashed grey lines represent the bins of JPEG qualities for multi-quality
detectors.
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more diverse cover and stego sources as well. Figure 3.4.2 shows the minimum error probability PE

and MD51 of Y CrCb-SRNet tile detectors (c. f., Channel separation in [147]), trained as multi-class

and used as binary detectors as executed by the authors. The grouping strategy does not a�ect the

detectors’ performance using either performance measure. For all QF ranges, we use mini-batch size

128 due to the increased diversity of the ALASKA dataset.

Note that, unlike the figures in [147], where the authors reported on a single test set comprising the

stego mixture, measures in Figure 3.4.2 are computed using the following characterization of the

ROC curve. If we denote the soft-output of a detector as ŷ and the true label as y, then:

PMD(T ) = P (ŷ Æ T | y > 0)

=
4ÿ

i=1

P (ŷ Æ T | y = i)P (y = i | y > 0)

PMD(T ) =
4ÿ

i=1

fiiP (ŷ Æ T | y = i). (3.4.2)

PFA(T ) = P (ŷ Ø T | y = 0)

PFA(T ) = 1 ≠ P (ŷ Æ T | y = 0). (3.4.3)

This gives a more robust estimation of performance measures as PMD is computed over stego versions

of all available TST covers instead of only a portion of TST covers for each stego scheme.

3.4.3 Reverse JPEG compatibility attack

The reverse JPEG compatibility attack is a powerful universal steganalysis attack for quality factors

99 and 100. In [167], the authors explain that for JPEG QF99 and QF100, the best detectors are

built by training on the rounding errors of decompressed images instead of the images themselves.

In particular, they replace the inputs of SRNet with the rounding errors to get the best detectors.

Table 3.1 shows that for these two qualities, SRNet trained on rounding errors is also scalable w.r.t.

the diversification.
1
Missed detection rate at 5% false alarm.
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Figure 3.4.2: Minimum error probability PE and missed detection rate at 5% false alarm MD5
of multi-quality detectors for ALASKA v1 compared to dedicated detectors trained during the
competition. Dashed grey lines represent the bins of JPEG qualities for multi-quality detectors.

QF 100 99
Payload 0.1 0.05 0.1 0.05

Dedicated 0.02 0.54 6.84 20.11
Trained on QF99–100 0.09 0.43 6.96 19.41

Table 3.1: Minimum error probability PE of multi-quality detectors for J-UNIWARD compared to
dedicated detectors trained using of the reverse JPEG compatibility attack.
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3.5 Robustness w.r.t. custom quantization tables

In this section, we selected 14 custom quantization tables from various camera models. The goal

is to investigate the ability of both detection paradigms to generalize to unseen custom JPEG

quantization tables.

3.5.1 A semi-metric comparing quantization tables

We introduce the following semi-metric to compare two quantization tables q and p:

d
2(q, p) =

ÿ

k,l

1
(k + l)2

3
qkl ≠ pkl

qkl + pkl

42

, (3.5.1)

which is a weighted sum of the squares of relative di�erences between corresponding quantization

coe�cients. The weights are larger for low spatial frequencies (upper left of the table) and lower

for high spatial frequencies (lower right of the table). We refer to it as the quantization table

“dissimilarity” measure. It allows us to link each quantization table to the nearest JPEG quality:

Q̂(q) = argminQ d(q,q(Q)). For a quantization table q, we denote B(q) as the bin of JPEG qualities

(used for training) to which Q̂(q) belongs. For notational simplicity, we denote the PE obtained

when training on p (one or multiple standard or custom quantization tables) and testing on q as

PE(p, q).

Figure 3.5.1 shows how the dissimilarity relates to SRNet’s performance when the quantization tables

are mismatched: the minimums are synchronized or sometimes relatively flat around the optimal

values. This shows that the Q̂(q) computed using the proposed dissimilarity measure will usually be

the best JPEG quality to steganalyze with, i. e., Q̂(q) = argminQ d(q,q(Q)) = argminQ PE(q(Q), q),

which is a desirable property of the dissimilarity measure.

Table 3.3 shows the PE of SRNet and DCT+FLD-ensemble in di�erent settings. Each row corre-

sponds to a custom quantization table q. These results are visualized in Figure 3.5.2, which shows

that SRNet is markedly more robust to mismatched custom quantization tables. Figure 3.5.2 also

shows that training on multiple JPEG qualities does not seem to a�ect this robustness on average.

Finally, Figure 3.5.2 points at some irregular behavior of the dissimilarity measure proposed. Even

though, in most cases, a large dissimilarity value implies a larger loss in PE, these losses are not

consistently decreasing as a function of the dissimilarity.
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Figure 3.5.1: Minimum error probability of SRNet PE(q(Q), q) and d(q(Q), q) for di�erent quality
factors Q ranging between 75 and 98 and for 10 custom quantization tables q. The first two rows
correspond to J-UNIWARD (0.4 bpnzac), while the rest correspond to UED (0.3 bpnzac).

(a) J-UNIWARD (0.4 bpnzac) (b) UED (0.3 bpnzac)

Figure 3.5.2: Loss in PE for custom quantization tables: PE(q, q) ≠ PE(q(Q̂), q) in solid, PE(q, q) ≠
PE(B(q), q) in dashed for SRNet (green) and DCTR+FLD-ensemble (blue). Subplots refer to the
three groups of quantization tables in Table 3.3.
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3.6 Numerical results

Table 3.2 shows examples of custom quantization tables used in this chapter, their closest standard

quantization table and their dissimilarity measure.

3.7 Conclusions

This chapter investigates the problem of detecting steganography in a diverse cover source of JPEG

images. We are particularly interested in how steganalysis detectors scale to multiple JPEG qualities

within a single model training, which we refer to as scalability w.r.t. JPEG quality factors. We show

that both feature-based and CNN based detectors scale to multiple quality factors. We propose a set

of detectors trained on a mixture of quality factors which, when compared with dedicated detectors

trained for a specific JPEG quality factor, show no substantial loss in performance. The mixtures

have been developed by gradually adding quality factors until a loss is observed when compared to

dedicated detectors.

A set of 14 custom quantization tables with various dissimilarity measures to standard tables has

been used to experimentally demonstrate that the scalability w.r.t. multiple JPEG qualities does not

come at the expense of the detectors’ robustness when facing mismatched custom quantization tables.

CNN based steganalysis show a markedly better robustness compared to feature-based detectors.

This chapter’s general outcome is that we do not need to train a detector for each quality factor.

This is very useful in practice, where one inevitably faces a diverse JPEG cover source, as it was the

case, for example, in the ALASKA challenge.
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Custom Quantization Table Standard Quantization Table Q̂ d(q, q(Q̂)) (◊100)
8 6 7 7 9 12 25 36
6 6 7 9 11 18 32 46
5 7 8 11 19 28 39 48
8 10 12 15 28 32 44 49
12 13 20 26 34 41 52 56
20 29 29 44 55 52 61 50
26 30 35 40 52 57 60 52
31 28 28 31 39 46 51 50

8 6 5 8 12 20 26 31
6 6 7 10 13 29 30 28
7 7 8 12 20 29 35 28
7 9 11 15 26 44 40 31
9 11 19 28 34 55 52 39
12 18 28 32 41 52 57 46
25 32 39 44 52 61 60 51
36 46 48 49 56 50 52 50

75 11.99

8 8 8 8 8 17 25 25
8 8 8 8 8 25 25 25
8 8 8 8 17 25 25 25
8 8 8 8 25 33 33 25
8 8 17 25 25 42 42 33
8 17 25 25 33 42 50 42
17 25 33 33 42 50 50 42
33 42 42 42 50 42 42 42

8 6 5 8 12 20 26 31
6 6 7 10 13 29 30 28
7 7 8 12 20 29 35 28
7 9 11 15 26 44 40 31
9 11 19 28 34 55 52 39
12 18 28 32 41 52 57 46
25 32 39 44 52 61 60 51
36 46 48 49 56 50 52 50

75 14.38

4 3 2 4 6 11 14 16
3 3 3 5 7 16 16 15
3 3 4 6 11 15 19 15
3 4 6 8 14 24 22 17
4 6 10 15 18 30 28 21
6 9 15 17 22 28 31 25
13 17 21 24 28 33 33 27
19 25 26 27 30 27 28 27

4 3 2 4 6 10 12 15
3 3 3 5 6 14 14 13
3 3 4 6 10 14 17 13
3 4 5 7 12 21 19 15
4 5 9 13 16 26 25 18
6 8 13 15 19 25 27 22
12 15 19 21 25 29 29 24
17 22 23 24 27 24 25 24

88 4.57

3 3 3 3 8 5 13 13
3 3 3 3 5 11 13 13
3 3 5 5 5 11 16 16
3 5 5 8 13 16 24 24
3 5 8 13 16 18 13 26
11 8 13 16 18 24 18 24
5 16 21 18 24 26 24 21
16 18 21 21 26 26 24 24

4 3 2 4 6 10 12 15
3 3 3 5 6 14 14 13
3 3 4 6 10 14 17 13
3 4 5 7 12 21 19 15
4 5 9 13 16 26 25 18
6 8 13 15 19 25 27 22
12 15 19 21 25 29 29 24
17 22 23 24 27 24 25 24

88 15.46

3 2 2 3 4 3 8 9
2 2 2 3 4 9 9 8
2 2 3 4 6 9 10 8
2 3 4 5 8 13 12 9
3 4 6 8 10 16 15 11
4 5 8 9 12 15 16 13
7 9 11 13 15 18 17 15
11 13 14 14 16 15 15 14

3 2 2 3 4 6 8 10
2 2 2 3 4 9 10 9
2 2 3 4 6 9 11 9
2 3 4 5 8 14 13 10
3 4 6 9 11 17 16 12
4 6 9 10 13 17 18 15
8 10 12 14 16 19 19 16
12 15 15 16 18 16 16 16

92 3.01

2 2 2 2 6 4 9 9
2 2 2 2 4 8 9 9
2 2 4 4 4 8 13 11
2 4 4 6 9 11 17 17
2 4 6 9 11 13 9 19
8 6 9 11 13 17 13 17
4 11 15 13 17 19 17 15
11 13 15 15 19 19 17 17

3 2 2 3 4 6 8 10
2 2 2 3 4 9 10 9
2 2 3 4 6 9 11 9
2 3 4 5 8 14 13 10
3 4 6 9 11 17 16 12
4 6 9 10 13 17 18 15
8 10 12 14 16 19 19 16
12 15 15 16 18 16 16 16

92 15.60

Table 3.2: Examples of custom quantization tables used and their closest standard counterparts.
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d(q, q(Q̂)) J-UNIWARD (0.4 bpnzac) UED (0.3 bpnzac)
Q̂ (x100) PE(q, q) PE(B(q), q) PE(q(Q̂), q) PE(q, q) PE(B(q), q) PE(q(Q̂), q)

75

11.99 6.42 5.81 6.63 2.87 2.24 3.10
12.55 6.83 5.99 6.93 3.14 2.52 3.63
12.98 4.47 5.93 6.93 3.05 2.49 3.48
14.38 6.91 14.08 9.00 1.35 6.93 4.39

88

4.57 10.58 11.80 11.24 4.66 5.12 5.09
5.90 8.57 8.77 9.07 4.28 4.24 3.62
7.25 8.39 8.90 8.75 3.41 4.31 3.50
14.24 8.83 8.67 9.41 3.99 3.94 4.42
15.46 9.66 9.97 9.83 4.09 4.30 4.05

92

3.01 9.84 10.13 10.00 5.10 5.32 5.33
5.95 9.61 10.90 10.13 4.72 5.50 5.10
9.29 13.10 13.14 14.01 6.63 6.64 7.54
11.17 9.00 12.86 10.94 4.05 6.14 4.55
15.60 12.28 12.11 12.87 5.59 5.38 6.04

(a) SRNet

d(q, q(Q̂)) J-UNIWARD (0.4 bpnzac) UED (0.3 bpnzac)
Q̂ (x100) PE(q, q) PE(B(q), q) PE(q(Q̂), q) PE(q, q) PE(B(q), q) PE(q(Q̂), q)

75

11.99 27.48 34.62 35.41 22.85 26.16 28.13
12.55 28.2 34.36 35.94 24.51 28.14 31.05
12.98 27.47 33.65 35.27 23.41 26.06 28.74
14.38 23.73 41.92 39.84 15.79 39.5 36.78

88

4.57 35.82 36.98 38.61 30.43 31.88 35.36
5.90 33.47 41.58 41.58 27.44 30.06 31.06
7.25 33.18 40.24 41.35 27.15 31.54 32.08
14.24 34.22 42.64 38.29 28.38 31.51 32.89
15.46 34.02 48.74 40.07 27.24 34.66 31.27

92

3.01 35.24 41.89 39.38 30.64 35.52 35.65
5.95 34.98 45.19 42.84 29.83 39.16 39.18
9.29 37.88 40.96 40.76 34.35 35.55 39.05
11.17 33.85 47.86 44.89 28.34 45.11 43.19
15.60 37.07 44.26 41.97 31.92 39.14 36.35

(b) DCTR+FLD-ensemble

Table 3.3: Minimum total error probability PE of various detectors: (i) dedicated PE(q, q) (ii)
trained on the corresponding bin PE(B(q), q) (iii) trained on the closest JPEG quality PE(q(Q̂), q),
using SRNet (a) and DCTR+FLD-ensemble (b). Each row corresponds to a custom quantization
table.
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Chapter 4

ImageNet Pre-trained CNN

Models for JPEG Steganalysis

In this chapter, we share our experience with recent computer-vision models originally pre-trained on

ImageNet [122] for image classification, which were refined for steganalysis in the JPEG domain. This

approach was predominantly employed by virtually all top performers during the recent steganalysis

competition ALASKA II hosted on Kaggle. Pre-training exposes the CNN to more than a million

images from a very large number of sources, extremely diverse processing, and diverse content.

As such, the filters in their convolutional layers are able to recognize a great diversity of shapes,

textures, noise patterns, processing and image-development traces, which are exactly the attributes

that modulate the stego signal of modern content-adaptive steganographic schemes. Detecting stego

noise is essentially equivalent to detecting traces of the content itself.

This approach is fairly new to the steganalysis literature. In fact, to the best of our knowledge, only

one published paper [168] uses an ImageNet pre-trained model for steganalysis in spatial domain

but does not compare it to any other steganalysis detector, nor uses a standard dataset.

In the next section, we introduce ImageNet models and methods of transfer learning for steganalysis.

Section 4.2 describes the experimental setup, Section 4.3.1 lays out the chapter’s main experimental

results, Section 4.4 briefly describes the ALASKA II competition and our prize winning submission.

The chapter is concluded in Section 7.7.
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4.1 ImageNet models

ImageNet is one of the largest computer vision benchmark databases. Most computer vision research

uses the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) “trimmed” version of 1,000

classes and approximately 1.3 million training images.

This chapter experiments with CNNs originally trained on ImgeNet and with a model scaling pa-

rameter that controls the size of the network: ResNet [165] and its variants, TResNet [169], SK-

ResNeXt [170], and DenseNet [171], as well as the E�cientNet [172] and MixNet [173] (MN).

In addition to recent advances in neural architectures benchmarked on ImageNet, a large body of

work is dedicated to transfer learning, i. e., using ImageNet pre-trained neural networks and fine-

tuning either the entire network or a subset of the network on a new task. A recent study of transfer

learning of ImageNet models [174] shows that better ImageNet models transfer better to new tasks.

4.1.1 Steganalysis transfer learning

Steganalysis transfer learning was done using two pipelines: (A) A pipeline inspired by Alex Shon-

enkov’s public baseline,1 using cross-entropy loss and the AdamW optimizer with 10≠2 weight decay,

for 50 epochs using “ReduceLROnPlateau” Learning Rate (LR) scheduler monitoring the validation

loss with a start LR of 10≠3, a patience of 2 epochs, a multiplier of 1/2, and D4 training augmenta-

tion. (B) A slightly di�erent pipeline using a multi-head classifier (Binary and Multi-class heads) and

cosine annealing LR decay from 10≠3 to 10≠5, for 100 epochs, and using coarse dropout with a small

probability and a maximum number of zeroed regions set to 1, in addition to D4 augmentations.

All training augmentations were performed using the Albumentations library [175].

Targeted experiments indicated that the most influential hyper-parameters in fine-tuning ImageNet

models using both pipelines are the LR and the weight decay, which have to be adjusted for each

optimizer. Due to time constraints, we did not perform a rigorous search for optimal settings but

early experiments showed that (A) and (B) worked rather well for various CNNs although (B) gave

slightly better results for larger architectures.

Networks larger than 10M parameters were trained using Automatic Mixed Precision (AMP), from

NVIDIA’s apex library.
1https://www.kaggle.com/shonenkov/train-inference-gpu-baseline
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Note that the refining detailed here has been used on the ALASKA II training dataset described

in Section 4.2. It is possible that it may need to be adjusted for best results when refining other

pre-trained models on other datasets, stego methods, and a di�erent set of JPEG quality factors.

4.2 Experimental setup

The majority of experiments reported upon in this chapter were executed on the training dataset

made available by the organizers of ALASKA II. It contains 3◊25,000 di�erent cover images com-

pressed with quality factors 75, 90, and 95, and the same amount of stego images embedded with

J-UNIWARD [19], J-MiPOD [176], and UERD [21], making the training set size 4◊75,000 images.

Per the description of the organizers, the payload embedded in each image was scaled so that all

images are approximately equally di�cult to detect, with comparatively smaller payload embedded

in smooth images and larger payloads embedded in highly textured or noisy images. The average

payload embedded across the database was 0.4 bits per non-zero AC DCT coe�cient (bpnzac).

Unless mentioned otherwise, for the purpose of the competition the training set was randomly

split into three disjoint subsets while making sure each cover image was in the same subset as its

three stego versions: the training, validation, and testing sets with 4◊3◊22,000, 4◊3◊1,000, and

4◊3◊2,000 images, respectively.

Most experiments were evaluated with a performance measure derived from the receiver operating

characteristic curve (ROC) defined as the probability of correct detection of stego image as a function

of the probability of false alarm, PD(PFA): the weighted area under the ROC (wAUC) used in

ALASKA II.

Experiments in Section 4.3.4 are evaluated using the missed detection rate at false alarm 0.05 MD5,

and the minimum average total error under equal priors PE, for consistency with the ALASKA I

competition results.

4.3 Results

4.3.1 Baseline

As a baseline for the current state of the art in steganalysis of JPEG images, we selected the

three-channel SRNet [99] (Y CrCb), an architecture specifically designed for steganalysis. It was
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Model UERD J-UNIWARD J-MiPOD MixtureQF 75 90 95 75 90 95 75 90 95
SRNet 0.9208 0.9081 0.8987 0.8675 0.8459 0.8499 0.9760 0.9604 0.8199 0.8934

SRNet noPC 0.9385 0.9526 0.9391 0.8788 0.8841 0.8851 0.9814 0.9776 0.8501 0.9227

Table 4.1: wAUC for SRNet trained with cover-stego pair constraint, then refined without the pair
constraint.

trained from randomly initialized weights on QF75 using standard hyper-parameters and the training

schedule described in [99] with a batch size of 64. Then, it was fine-tuned on QF90 and QF95

separately for 160, 000 iterations with LR 10≠4 for the first 100, 000 iterations, which was then

divided by 2 after each 20, 000 iterations.

Another version of SRNet has also been studied in an attempt to improve the performance: refining

the trained SRNet on QF75 without the cover–stego pair constraint (PC). This was done by training

on each QF for 200, 000 iterations with LR 10≠4 for 20, 000 iterations, 10≠3 for 60, 000 iterations,

and for additional 3 ◊ 40, 000 iterations after dividing the LR by 10, 5, 2.

The wAUC for both SRNet versions is shown in Table 4.1 broken up by quality factors and stego

methods. The improvement due to refinements is especially significant for the two larger quality

factors and for UERD and J-UNIWARD. We note that all SRNet versions were trained on non-

rounded Y CrCb values after decompressing the JPEG image. We strongly hypothesize that the

improvement due to refining without pair constraint is due to restoring batch independence together

with using Batch Normalization layers. Pair constraint however, helps convergence early in training

from scratch. Also note that SRNet trained on all three quality factors together underperformed

compared to dedicated SRNet’s trained on each QF as the range is larger compared to those studied

in [109].

4.3.2 ImageNet models

In Table 4.2, we show the wAUC for five di�erent pre-trained models also broken up by quality

factor and stego method. All models were refined as explained in Section 4.1.1, E�cientNet B7*

was trained using pipeline (B) while the other models were trained using pipeline (A). Another

round of refinement was performed with the Mish activation function [177] replacing the original

Swish activation function [178]. The boost in wAUC provided by training on non-rounded pixel

values consistently ranged between 0.05 ≠ 0.1, while the boost due to Mish activation is visualized

in Figure 4.3.1. Unlike SRNet, the pre-trained models trained on all three QFs at once performed
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Model UERD J-UNIWARD J-MiPOD MixtureQF 75 90 95 75 90 95 75 90 95
MN-xL (Mish) 0.9577 0.9675 0.9570 0.8873 0.8895 0.8919 0.9827 0.9794 0.8621 0.9322

B4 (Mish) 0.9583 0.9664 0.9538 0.8885 0.8878 0.8967 0.9828 0.9807 0.8696 0.9331
B5 (Mish) 0.9606 0.9691 0.9597 0.8911 0.8945 0.9025 0.9851 0.9794 0.8693 0.9360
B6 (Mish) 0.9591 0.9665 0.9567 0.8935 0.8979 0.9022 0.9842 0.9801 0.8724 0.9361
B7* (Mish) 0.9592 0.9713 0.9528 0.9052 0.9112 0.8937 0.9876 0.9821 0.8600 0.9385

Table 4.2: wAUC for five pre-trained models refined for steganalysis with Mish activation and on
non-rounded RGB pixels.

similarly as models dedicated to a specific QF.

The pre-trained models o�er markedly better performance than the SRNet on all quality factors and

all stego methods. Also, deeper models generally achieve better detection accuracy. Figure 4.3.1

shows the performance in terms of the wAUC as a function of the model size (the number of

parameters) across all stego methods and then separately for each stego algorithm. The graphs

confirm that “bigger and deeper” is generally better. When viewing the performance for each stego

algorithm, however, one can see that the models’ accuracy varies quite a bit. For UERD, MixNet-xL

reaches basically the same performance as the much bigger B6 or B7*. For J-UNIWARD and J-

MiPOD, the SRNet no PC has a competitive performance and even outperforms MixNet-S and B2.

The boost due to the Mish activation is mostly for J-UNIWARD and J-MiPOD. This complementary

performance of the models is good as they will likely boost each other in an ensemble.

4.3.3 Pooling/stride ablation

Targeted experiments using di�erent CNN architectures show that the resolution of the first layers

is important for the final accuracy. In fact, it is well established within the steganalysis community

that CNNs for steganalysis should not perform any downsampling in the first few layers [94; 99].

Figure 4.3.2 shows how models building on the ResNet stem (conv 7 ◊ 7 with stride 2 followed by a

3◊3 max pooling layer with stride 2) compare to the SRNet noPC as a baseline. Architectures with

too much downsampling in the first layers do not follow the trend in Figure 4.3.1, and are generally

weaker than the baseline. Figure 4.3.2 also shows two di�erent trends, DenseNet and (SK-)ResNeXt

families seem to perform better than ResNet and T-ResNet families. We hypothesize that this is

due to the fact that DenseNet-121 and (SK-)ResNeXt-50 have a depth of 256 at the output of the

first block after the stem (second highest resolution) while ResNet-34 and T-ResNet-M have a depth

of 64.

Next, we compare within a single architecture (MixNet-S) how stride and max pooling in the stem
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Figure 4.3.1: Performance in terms of wAUC versus model size (number of parameters) of SRNet
noPC and di�erent ImageNet pre-trained models using Swish (blue) and Mish (green) activation
functions.
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Figure 4.3.2: Performance in terms of wAUC versus model size (number of parameters) across
di�erent ImageNet pre-trained models building on the ResNet stem and SRNet noPC.

MixNet-S stem wAUC
3 ◊ 3 conv, stride 2 0.9213
3 ◊ 3 conv, stride 1 0.9353

3 ◊ 3 conv, stride 1æ3 ◊ 3 avg pool, stride 2 0.8445
3 ◊ 3 conv, stride 2æ3 ◊ 3 avg pool, stride 2 0.8046

Table 4.3: wAUC for four variants of the MixNet-S architecture.

a�ect the performance. Table 4.3 shows the great benefit of removing the stem’s stride. Table 4.3

also shows how MixNet-S performs with di�erent stem downsampling settings when removing the

stride and adding an avg. pooling layer. The performance drops considerably despite the same

“resolution” as the vanilla MixNet-S stem. The drop is due to the low-pass nature of the average

pooling layer, which suppresses high frequency components. The performance drops even more when

keeping the strided convolution.

4.3.4 Selected case results: ALASKA I

In addition to ALASKA II experiments, we show how an ImageNet pre-trained model, E�cientNet

B4 with Mish activation performs on the ALASKA I dataset [42] with nsF5, UED, EBS, and

J-UNIWARD as stego schemes. The dataset preparation scripts have been modified to produce

256 ◊ 256 images (tiles), embedded with double the original payload size, and compressed with

JPEG quality 95. Recent work shows that CNNs trained in the spatial domain struggle to detect
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SRNet B4 (Mish) OneHot+SRNet
J-UNIWARD 4.55, 4.66 5.03, 5.14 4.31, 4.00

EBS 2.13, 1.20 1.44, 0.77 2.47, 1.51
UED 5.03, 5.49 5.49, 6.08 5.24, 5.63
nsF5 11.51, 24.60 13.97, 31.47 3.80, 3.14

Table 4.4: Detection error, missed detection at 5% false alarm (PE, MD5) of SRNet, E�cientNet-
B4 with Mish activation, and OneHot+SRNet [1] on the ALASKA I dataset (tiles, QF95, double
payload) when tested against individual stego algorithms.

nsF5 for high JPEG quality factors [1]. Table 4.4 shows that the E�cientNet family also struggles

with nsF5. For the other stego schemes, E�cientNet B4 (Mish) surprisingly performs similar to

SRNet.

We hypothesize that ImageNet pre-trained models are more data e�cient than SRNet trained from

scratch – ALASKA I has twice as many images per JPEG quality factor (25, 000 for ALASKA II

and 50, 000 for ALASKA I). With the right design, ImageNet pre-trained models are able to get

more reliable performance with less data, which seems to be in line with the observation made

in [174]: “4.7. Accuracy benefits of ImageNet pre-training fade quickly with dataset size.” Note that

E�cientNet B4 (Mish) was trained using pipeline (A) described in Section 4.1.1 and initialized with

ALASKA II weights. Searching for better hyper-parameters for the ALASKA I dataset might give

slightly better results.

4.4 The ALASKA II Challenge

ALASKA II competitors were evaluated using the wAUC on 5,000 images split into 1,000 from a

public and 4,000 from a private leader board (LB). The actual details about the split were unavailable

to the teams. Each team was allowed five submissions per day consisting of a scoring of all 5,000

images, with higher score given to images more likely to be stego. The feedback about the detection

accuracy was in the form of the wAUC computed only from the 1,000 images from the public LB.

The only information about the test set images that was provided was that each embedding algorithm

was used with the same probability and the payload computed in the same fashion as for the training

set with the average message length of 0.4 bpnzac. The images were all compressed with one of the

three JPEG quality factors: 95, 90, and 75.
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Model ensembles, 2nd level stacking, and final submission

Due to the competition’s time constraint, and the team’s late merger with Eugene Khvedchenya,

our model ensemble consisted of two separate ensembles trained on di�erent splits. Within each

ensemble, we trained a 2nd-level stacking model on the detectors’ outputs on the validation split

(catboost [179] for Ensemble 1, xgboost [180] for Ensemble 2):

• Ensemble 1: QF (target encoded), DCTR, JRM, SRNet, MixNet-S, MixNet-xL (Mish), Ef-

ficientNet B2, B4 Mish, B5 (Mish), and B6 (Mish) (1 fold) (test score 0.9401, private score

0.931, public score 0.935)

• Ensemble 2: QF (one hot encoded), E�cientNet B6* (4 folds), B6* (Mish) (2 folds) and B7*

(Mish) (2 folds) (test score 0.9424, private score 0.932, public score 0.941)

Due to the small size of the public LB, the best detector in Ensemble 1 (B6 (Mish)) performed

surprisingly low on the public LB (public score 0.932), but had one of the best single model perfor-

mances on the private LB (private score 0.926). We decided not to include it in our final submissions.

The final blending was done by rank averaging submissions from Ensemble 1 and 2, which had a

private score of 0.932 and public score of 0.944.

4.5 Conclusions

This chapter looks into the possibility to build steganalysis detectors from computer vision models

pre-trained on ImageNet and refined on examples of cover and stego images. Due to time constraints,

our study is limited to the setup of ALASKA II and some selected cases. Besides superior detection

accuracy, the pre-trained models o�er other significant advantages over models that have to be

trained from scratch: the transfer learning is orders of magnitude faster than training a dedicated

steganalysis CNN from scratch and is more data e�cient. The refining can be done more e�ciently

and can be done for multiple quality factors at the same time, which drastically reduces the training

complexity.

We conjecture that the superior detection performance is due to the fact that the pre-trained models

have been exposed to a great variety of content and thus are able to better learn noise patterns

modulated by content – the stego signal, with less data than specialized CNNs trained from scratch.
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Preliminary experiments on the ALASKA I dataset show that the accuracy benefit of ImageNet

pre-trained models diminishes with more training data.

This chapter poses more questions than it answers. Many interesting questions remain, such as the

ability of the pre-trained models to generalize to custom JPEG quantization tables, and what the

refinement should be for building detectors for spatial domain steganography.
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Chapter 5

Improving E�cientNet for JPEG

Steganalysis

Steganalysis with machine learning has undergone an explosive development during the past five

years. This was driven by a firm belief of domain experts that the task of steganalysis is somehow

fundamentally di�erent from the main objective of computer vision, which is object classification.

Fundamentally, though, detection of modern content-adaptive steganography is equivalent to de-

tecting noise-like signals shaped by the content itself. It is thus not surprising that CNNs trained

on computer vision tasks are a good starting point for transfer learning in steganalysis, as well as

the closely related field of digital forensics [181; 182; 183; 184].

This is confirmed by the proliferation of pre-trained models from computer vision in the recent

Kaggle competitions in Camera Model Identification,1 Deep Fake Detection,2 and especially, in the

ALASKA II [43] JPEG steganalysis challenge.3 Many participants in ALASKA II [2; 121; 185]

used the popular E�cientNet [172] pre-trained on ImageNet [122] and refined for steganalysis in the

JPEG domain. Such architectures achieved markedly better performance [2; 43] than the popular

SRNet [99] considered as one of the state-of-the-art CNNs for steganalysis.

In this chapter, we investigate several “surgical modifications” of the E�cientNet family to further

improve their performance for steganalysis while keeping in mind the computational complexity

both in terms of FLOPs, the memory consumption, and the number of parameters. The main
1https://www.kaggle.com/c/sp-society-camera-model-identification
2https://www.kaggle.com/c/deepfake-detection-challenge
3https://www.kaggle.com/c/alaska2-image-steganalysis
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idea for the surgical modifications follows what has already been hinted at in [93; 94] and further

exploited in [99], namely that decreasing the resolution of the networks in early layers via pooling

or striding negatively a�ects their detection accuracy as such operations enhance image content

while suppressing the noise-like stego signal. Using the ALASKA II dataset as a benchmark, we

investigate several types of surgical modifications in terms of their performance and computational

complexity.

Note that we do not investigate after-the-fact model compression methods such as pruning [186; 187]

or distillation [188], as these are conventionally applied after an initial training, and can be applied

to any architecture.

We also study the E�cientNet family in other, aggressively downsampled image datasets, such as

the BOSSbase, where the E�cientNet family does not seem to perform as well with respect to the

SRNet. We attribute this drop to the aggressive subsampling of images and show that the proposed

surgical modifications significantly improve E�cientNet detection accuracy.

In the next section, we introduce the notation used in this chapter. Section 5.2 lays out the exper-

imental setting. Section 5.3 describes the ImageNet pre-trained CNNs and their building blocks.

Section 5.4 describes the proposed “surgical modifications.” Section 5.5 studies the ImageNet pre-

trained E�cientNet in other datasets. The chapter is concluded in Section 5.6.

5.1 Notation

For consistency with the results from the ALASKA II competition, we evaluate the detectors’ per-

formance using the weighted area under the receiver operating characteristic (ROC) curve (wAUC).

For reference, we also occasionally report the minimum average error rate under equal priors PE.

FLOPs is the total number of floating point operations performed to do a single forward pass using

a single image input, computed using the ‘fvcore‘ package from Facebook Research.4 Note that

only multiplications are counted while additions as well as the bias are ignored. For example, a

k ◊ k ◊ Cout convolution layer with no stride and same padding operating on a Cin ◊ H ◊ W has

FLOPs = k
2
HWCinCout.

We measure the GPU memory needed to train a model using the peak memory consumption from

the ‘nvidia-smi‘ output. To this end, we choose a batch-size of 8, a single GPU, and the other
4https://github.com/facebookresearch/fvcore
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hyper-parameters as detailed in 5.3.2. Note that the memory consumption is only an estimate and

strongly depends on the implementation used. Also, it should not be confused with the total GPU

memory needed since a larger batch-size is used (using data parallelism over multiple GPUs) as

detailed in 5.3.2.

5.2 Experimental setting

The ALASKA II [43] dataset contains 3◊25,000 di�erent cover images compressed with quality

factors 75, 90, and 95, and the same number of stego images embedded with J-UNIWARD [19],

J-MiPOD [176], and UERD [21], making the training set size 4◊75,000 images. The payload em-

bedded in each image was scaled so that all images were approximately equally di�cult to detect –

comparatively smaller payloads were embedded in smooth images with larger payloads in highly tex-

tured or noisy images. The average payload embedded across the database was 0.4 bits per non-zero

AC DCT coe�cient (bpnzac). The dataset was randomly divided into three sets with 4◊3◊22,000,

4◊3◊1,000, and 4◊3◊2,000 images, for training, validation, and testing respectively. The splits

were made compatible with those used in [2]. Note that, unlike [2], this chapter does not report

results using test-time augmentation (TTA).

Section 5.5.1 describes additional datasets used to investigate the ImageNet pre-trained models in

di�erent settings. We describe those settings within Section 5.5 for better readability.

5.3 E�cientNet for JPEG steganalysis

5.3.1 E�cientNet and SE-ResNet

Our investigation is constrained to the E�cientNet family widely used by the top competitors in

the Alaska II challenge, and ultimately compared with the SE-ResNet [189] used by the winner of

the competition. Other work [2] reports on the MixNet [173] architecture, which we argue achieves

a very similar performance as the E�cientNet due to strong architecture similarities. Thus, we do

not report results using the MixNet family for this reason but expect our contributions to transfer

to such similar architectures.

The E�cientNet is built using the Inverted Residual Block [190] (IR) depicted in Figure 5.3.1. The

lightweight depth-wise separable convolution (D-Conv) is the key to the network’s e�ciency. On
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Figure 5.3.1: (a) The Inverted Residual block used in the E�cientNet architecture, t denotes the
expansion parameter of the block. (b) The ResNet Block used in SE-ResNet18. (c) The Squeeze
& Excite block, r denotes the reduction parameter. In (a) and (b) Conv Blocks are composed of a
Convolution layer, Batch Normalization layer, and an Activation.

the other hand, the SE-ResNet uses the classical ResNet Block [165]. Both architectures use the

Squeeze & Excite Block [189] with di�erent reduction parameters.

5.3.2 Transfer learning procedure

Fine-tuning ImageNet pre-trained models on a steganalysis task is done using multi-class cross-

entropy loss and the AdamW optimizer with 10≠2 weight decay, for 60 epochs using a cosine learning

rate scheduler with a start LR of 10≠3 and end LR of 2 ◊ 10≠5, and D4 training augmentation. The

model is converted and trained in Automatic Mixed Precision (AMP). We used a minimum batch

size of 24, which was increased for smaller architectures to speed up training. The mini-batches were

not pair-constrained, which means that on average, one batch included 1/4 cover images and 3/4

stego images randomly sampled. The JPEG images were decompressed to RGB color space without

rounding or clipping. After training, we chose the best checkpoint based on the wAUC metric on

the validation set.
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Surgical modification wAUC FLOPs
(B)

Params
(M)

Mem
(MiB)

Vanilla B0 .92601 2.15 4.01 3,354
B0 no stride L0 .92844 8.31 4.01 10,162
B0 no stride L2 .93552 30.73 4.01 24,184
B4 no stride L0 .94408 31.63 17.56 21,484
B6 no stride L0 .94618 69.97 40.74 40,186

Table 5.1: wAUC, FLOPs, and the number of parameters of di�erent modifications of the E�cient-
Net family.

5.4 “Surgical modifications” improve E�cientNet

The Alaska II Kaggle competition has shown that many successful ImageNet pre-trained CNNs

can achieve a very competitive performance when fine-tuned on a steganalysis task. Moreover,

carefully modified ImageNet pre-trained CNNs can be made even better. We consider two types of

“surgical modifications”: ablation of downsampling elements in the architectures (stride, pooling)

and insertion of additional layers operating on high-resolution feature representations.

5.4.1 Stem stride ablation

In [2], the authors show that the performance of the MixNet-S can be significantly improved by

removing the stride from its stem. This was also reported by many competitors.5 We report similar

results with the E�cientNet family for consistency with the chapter’s experiments. Table 5.1 shows

that removing strides from the stem (no stride L0) and from the next strided block (no stride L2) of

E�cientNet B0 significantly improves the performance but comes at a substantial price in FLOPs

and memory requirements because the convolutions will operate on 4◊ larger volumes after each

removed stride. Removing strides from the stem of E�cientNet B4 gives a stellar performance but

with an unreasonably high memory consumption making the training extremely slow.

For SE-ResNet, we first remove the max-pooling in the stem and train for 10 epochs, then remove

the stride and continue the training. Note that this was not described by the winner of the Alaska

II competition in [185] but was essential to successfully train the modified architecture with the

hyper-parameters of our experiments. Similarly, this surgical modification comes at a substantial

price in FLOPs.

Note that disabling stride and/or pooling in the stem does not change the number of parameters
5https://www.kaggle.com/c/alaska2-image-steganalysis/discussion
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Surgical modification wAUC FLOPs
(B)

Params
(M)

Mem
(MiB)

Vanilla SE-ResNet .87661 9.53 11.26 3,084
SE-ResNet no stride/pool L0 .94231 144.89 11.26 8,468

Table 5.2: wAUC, FLOPs, and the number of parameters of the SE-ResNet-18 and its modified
version.

Surgical modification wAUC FLOPs
(B)

Params
(M)

Mem
(MiB)

Vanilla B0 .92601 2.15 4.01 3,354
B0 - original pre-stem .92902 7.16 4.04 3,978

B0 - pre-stem IR blocks .93300 4.98 4.03 6,460
B0 - post-stem IR blocks .93313 4.88 4.02 6,812

Table 5.3: wAUC, FLOPs, and the number of parameters of di�erent modifications of the
E�cientNet-B0.

of a network, however the computational cost (GPU memory and FLOPs) to train it increase

significantly. This motivates our choice to use FLOPs as a model-complexity measure.

5.4.2 Unpooled layers implant

In this section, we show that the performance can be improved at a much lower cost in term of

FLOPs and memory requirements by inserting layers at influential parts of the architecture, namely

in early layers to mimic the “unpooled layers” of steganalysis CNNs, such as the SRNet.

Some Alaska II competitors reported performance increase when adding layers to the E�cientNet

architecture [191]. We call this surgical modification “pre-stem insertion,” since the layers are

implanted before the stem. The original modification described in [191] only included 3 convolutional

blocks with an increased number of channels. We show that using 4 blocks and a large number of

channels from the first block is beneficial. Note that we did not modify the last two layers as

described in [191] as this degraded the performance in our experiments.

Additionally, we introduce a new surgical modification called “post-stem” insertion, which (i) disables

the downsampling operation in the stem and (ii) inserts convolutional blocks after the stem, last

of which has a stride of 2. In essence, post-stem and pre-stem are very similar architectures, with

post-stem being more computationally e�cient and more accurate as shown in Table 5.3.

We choose to study the post-stem surgery further by changing some of its design hyper-parameters.

Increasing the expansion parameter t of the implanted Inverted Residual blocks improves the repre-
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Surgical modification wAUC FLOPs
(B)

Params
(M)

Mem
(MiB)

B0 - post-stem IR blocks t = 1 .93313 4.88 4.02 6,812
B0 - post-stem IR blocks t = 4 .93506 12.15 4.05 13,840
B0 - post-stem ResNet blocks .93623 18.31 4.08 6,488

Table 5.4: wAUC, FLOPs, and the number of parameters of di�erent variants of the post-stem
surgical modification with the E�cientNet-B0.
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Figure 5.4.1: wAUC vs. FLOPs of E�cientNet-B0 with a post-stem modification and a varying
number of inserted convolutional blocks.

sentation capacity of those layers by allowing to form a larger number of noise residuals. Using the

ResNet blocks instead of the lightweight Inverted Residual blocks also allows the implants to form

more complex residuals. Both changes improve the performance as shown in Table 5.4. These im-

provements prove, yet again, the importance of the early unpooled layers in the architectures. Note

that these improvements also come at a FLOPs cost, making the surgically modified model more

computationally demanding but still having a better performance-memory to compute trade-o� than

the stride ablation studied in Section 5.4.1.

We also study the e�ects of the number of inserted layers in Figure 5.4.1, which shows that the

performance increases with increasing number of blocks, then saturates at 4 inserted ResNet blocks.

He hypothesize that this optimal number of inserted layers depends on the cover and/or stego

source and would require to be validated accordingly. However, for the sake of the experiments in

this chapter, we fix a number of inserted layers of 4 for the post-stem surgery, keeping in mind that

this number might be di�erent for di�erent scenarios (e.g. spatial domain steganalysis).

Figure 5.4.2 describes all insertion strategies proposed and studied in this chapter. The insertion

strategies are shown with 4 added blocks, determined by the results shown in Figure 5.4.1. We show
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Figure 5.4.2: All surgical modifications studied. Blue blocks are the inserted blocks. In (a) and
(b) the stem* convolutional kernels are duplicated and concatenated to match the previous layer’s
dimension.

the performance of the modifications studied in Figure 5.4.3, removing the stride performs best but

at a significant memory cost as discussed in Section 5.4.1, the next best modification coming at a

lower memory cost is the post-stem with ResNet blocks. The SE-ResNet18 with stride and pooling

removed has a significant FLOPs count due to the use of the expensive ResNet blocks, but has a

reasonable memory footprint thanks to its reduced size. A similar trend is observed with PE as a

metric instead of the wAUC. The equivalent of Figure 5.4.3 with the PE metric is shown in Figure ??

in the Appendix for reference.

5.4.3 Do we gain from ImageNet pre-training of modified CNNs?

A relevant question regarding the surgical modifications is whether we might gain from pre-training

the modified architectures on ImageNet instead of only modifying them at the transfer learning

stage. This question is especially relevant for the post-stem modification where randomly initialized

layers are inserted within a network already trained on ImageNet. Table 5.5 shows that there is no

substantial benefit from training the modified E�cientNet on ImageNet. The table also includes a

“control” vanilla E�cientNet-B0 pre-training to show that our local ImageNet pre-training matches
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Figure 5.4.3: wAUC (top) and 1 ≠ PE (bottom) vs. FLOPs and memory requirements of di�erent
surgical modifications. The E�cientNet B6 with stride disabled and B6 post-stem with ResNet
blocks achieve a comparable performance to the SE-ResNet18 with pool and stride disabled, with
one half of the FLOPs. For reference, we include the vanilla versions of the E�cientNet trained
using the schedule described in [2] in Section II.A.
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Pre-trained
w/

modification

Surgically
modified

B0 - post-stem .93391 .93313
(control) Vanilla B0 .92609 .92601

Table 5.5: wAUC of E�cientNet-B0 with post-stem with Inverted Residual Block t = 1 and un-
changed. Modification done at the pre-training stage or at the transfer learning stage.
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Figure 5.4.4: Validation wAUC at di�erent training epochs of the E�cientNet-B0 with post-stem
with Inverted Residual Block t = 1 both pre-trained with the modification or surgically modified.

the one done by the E�cientNet-pytorch6 library in terms of performance in the downstream task.

This means that it is safe to “surgically” apply the modifications at the transfer learning stage.

Pre-training on the ImageNet dataset was done for 100 epochs with the SGD optimizer with 0.9

momentum, a weight-decay of 10≠5, the OneCycle learning rate scheduler with a maximum learning

rate of 0.5, a minimum of 10≠3, and a batch-size of 512.

Figure 5.4.4 shows the validation wAUC at di�erent training epochs of the two versions of the B0

- post-stem in Table 5.5. We note that while the surgically modified network starts lower than the

the one pre-trained with the modification, the two versions eventually converge to a very close peak

performance as shown in Table 5.5. The early epochs of post-stem surgically modified networks

usually exhibit a lower performance due to the randomly initialized convolutional blocks inserted,

but the performance increases given enough epochs.
6https://github.com/lukemelas/EfficientNet-PyTorch
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5.5 Where does E�cientNet shine?

5.5.1 Additional experimental setting

For this section, we use two more datasets to compare the e�ectiveness of the ImageNet pre-trained

E�cientNet in di�erent settings.

BOSSbase+BOWS2 is the union of BOSSbase 1.01 [143] and BOWS2 [144] converted to grayscale

and resized to 256◊256 using Matlab’s ’imresize’ with default parameters. We use JPEG quality

factors 75, 90, and 95 and embedding schemes J-UNIWARD, J-MiPOD, and UERD at 0.4, 0.4 and

0.2 bnzac respectively (fixed payload sender). The dataset is randomly divided into three sets with

4◊3◊14, 000 (BOSSbase+BOWS2), 4◊3◊1, 000 (BOSSbase), 4◊3◊5, 000 images (BOSSbase) for

training, validation, and testing respectively. The splits are also made compatible with [99]. Note

that for consistency with the results from the ALASKA II competition, we used the same versions

of the previously listed embedding schemes as in the competition’s dataset. New versions of the

J-MiPOD [192] or correctly implemented UERD were not considered.

We create a new dataset called ALASKA II BOSS-style which contains raw images from the

ALASKA II dataset, processed using the BOSSbase processing script and resized to 256 ◊ 256

using ImageMagick’s resize with default parameters. We use the same embedding script as the

ALASKA II dataset with an average payload across database of 0.2 bpnzac (Detectability Limited

Sender [193]). The dataset is divided into the same splits as the ALASKA II dataset.

5.5.2 Training and transfer learning procedure

We use the SRNet [99] without the pair-constraint [2] as a baseline to evaluate E�cientNet in these

additional datasets. SRNet was first trained on QF75 with the pair-constraint for 200 epochs then

refined on QF75, 90, and 95 without the pair-constraint for another 100 epochs. Training was done

with the multi-class cross-entropy loss, using the Adamax optimizer with a 10≠4 weight decay, the

OneCycle learning rate scheduler with a start LR of 4 ◊ 10≠5, a maximum LR of 10≠3, and an end

LR of 2◊10≠5. Inputs were also transformed to RGB for color images without rounding or clipping,

and divided by 255 before feeding to the network.

For the ImageNet pre-trained E�cientNet and SE-ResNet18, we used the same hyper-parameters

as in 5.3.2. For grayscale BOSSbase+BOWS2, we insert a 1 ◊ 1 convolution layer with 3 output

channels before the stem to match the input channels of the pre-trained stem.
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Dataset ALASKA II BOSSbase+BOWS2 ALASKA II BOSS-style
Sender DeLS 0.4 DeLS 0.4 DeLS 0.4 PLS 0.4 PLS 0.4 PLS 0.2 DeLS 0.2 DeLS 0.2 DeLS 0.2

J-UNI J-MiPOD UERD J-UNI J-MiPOD UERD J-UNI J-MiPOD UERD
SRNet .8718 .9427 .9364 .9634 .9780 .9773 .9903 .9142 .9279

B4 .8783 .9475 .9540 .9528 .9723 .9812 .9892 .9021 .9436
B4 no stride L0 .9092 .9592 .9636 .9700 .9828 .9857 .9925 .9302 .9528

B4 post-stem ResNet blocks .9006 .9574 .9620 .9746 .9852 .9879 .9923 .9302 .9532
B6 post-stem ResNet blocks .9057 .9566 .9629 .9731 .9880 .9842 .9927 .9382 .9503

SE-ResNet18 no stride/pool L0 .9045 .9610 .9611 .9729 .9839 .9865 .9911 .9234 .9491

Table 5.6: wAUC of di�erent modifications of the E�cientNet, the SE-ResNet18, and the SRNet as
a baseline in three di�erent datasets with their respective sender strategies.

5.5.3 The e�ect of BOSS-style processing

This investigation section started by noticing the surprising di�erence between the first two columns

in Table 5.6: in the ALASKA II dataset, the vanilla E�cientNet-B4 outperforms SRNet, but in

the BOSSbase+BOWS2 dataset, SRNet outperforms the E�cientNet-B4. Note that this was also

observed in [2] with the ALASKA I [42] dataset.

In [2], the authors hypothesized that this shift is due to the fact that ImageNet pre-trained models

might be more data e�cient than the SRNet trained from scratch.

However, we show that the main di�erences between the first two columns of Table 5.6 are mostly due

to the cover processing pipeline because using a “BOSSbase-style” ALASKA II processed database

again shows E�cientNet-B4 underperforming.

Table 5.6 shows that vanilla versions of ImageNet pre-trained models underperform in strongly

subsampled cover sources, such as BOSSbase+BOWS2 and BOSS-style datasets. We hypothesize

that this is due to their lack of unpooled layers. Strongly subsampled cover sources exhibit more

high frequency content, which will require more layers operating at the original resolution. The

proposed surgical modifications help mitigate this e�ect as they introduce more unpooled layers into

the architecture.

Note that this observation does not hold for the UERD embedding scheme. This is because the

ALASKA II competition used a faulty implementation of UERD that concentrates most of the

embedding changes at the image boundary and thus is much less dependent on the cover source.

We verify that BOSS-style datasets have indeed more high frequency content by computing the

average energy of the KB [9] residual over 500 images from the original ALAKA II and the ALASKA

II BOSS-style. Figure 5.5.1 shows the distributions of the square root of the average energy (the

square root helps avoid large outliers) for the two datasets in the uncompressed format, JPEG

compressed with qualities 95, 90, and 75. Figure 5.5.1 shows that indeed, BOSS-style processing
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Figure 5.5.1: Distribution of the square root of the average KB residual energy across 500 images
uncompressed and JPEG compressed with qualities 95, 90, and 75 from the ALASKA II and the
ALASKA II BOSS-style datasets.

contains complex content when measured by the inability to predict the pixel values from their

neighborhoods using the KB filter.

Table 5.6 also shows that the E�cientNet B6 (amd B4) post-stem with ResNet blocks have a

very comparable performance to the SE-ResNet18 no stride/pool L0 (even slightly better) on the

BOSSbase+BOWS2 and ALASKA II BOSS-style datasets. Note that on these datasets, the post-

stem surgery performs better than the stride ablation, unlike in the ALASKA II dataset as shown

in Figure 5.4.3.

5.6 Conclusions

We propose and study several di�erent ways to modify the E�cientNet architecture to significantly

improve performance for JPEG steganalysis. These so called “surgical modifications” are done at

the transfer-learning stage to substantially improve the performance upon the original (vanilla)

E�cientNet architectures. The post-stem modification boosts the performance while keeping the

computational cost and the memory requirements reasonable by increasing the number of unpooled

layers in the architecture. Removing the stride in the stem of the E�cientNet architectures, on the

other hand, requires large GPU memory for training. The modified models reach state-of-the-art

performance with less than 1/2 of the FLOPs of the current best model on the ALASKA II dataset.

We also test the E�cientNet family in di�erent datasets and notice that in strongly subsampled

cover sources (e. g., BOSSbase+BOWS2), they underperform with respect to the SRNet due to
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Model UERD J-UNIWARD J-MiPOD Mixture FLOPs Params Mem
Backbone Surgical Modification QF75 QF90 QF95 QF75 QF90 QF95 QF75 QF90 QF95 (B) (M) (MiB)

B0

None .9513 .9653 .9517 .8766 .8777 .8847 .9820 .9740 .8532 .92601 2.15 4.01 3,354
No stride L0 .9529 .9640 .9539 .8753 .8830 .8881 .9811 .9793 .8630 .92844 8.31 4.01 10,162
No stride L2 .9539 .9637 .9550 .8892 .8944 .9054 .9856 .9839 .8779 .93552 30.73 4.01 24,184

Original pre-stem .9515 .9623 .9481 .8768 .8846 .8941 .9819 .9785 .8701 .92902 7.16 4.04 3,978
Pre-stem IR blocks t = 1 .9552 .9662 .9553 .8866 .8915 .8967 .9840 .9792 .8686 .93300 4.98 4.03 6,460
Post-stem IR blocks t = 1 .9532 .9649 .9563 .8854 .8925 .9003 .9818 .9794 .8735 .93313 4.88 4.02 6,812
Post-stem IR blocks t = 4 .9523 .9640 .9569 .8904 .8973 .9048 .9834 .9815 .8738 .93506 12.15 4.05 13,840
Post-stem ResNet blocks .9552 .9650 .9559 .8932 .9004 .9066 .9830 .9818 .8746 .93623 18.31 4.08 6,488

B4

None .9542 .9624 .9497 .8783 .8788 .8860 .9805 .9759 .8596 .92675 8.20 17.56 6,692
No stride L0 .9608 .9699 .9631 .9069 .9116 .9149 .9879 .9851 .8853 .94408 31.63 17.56 21,484

Post-stem IR t = 1 .9587 .9671 .9578 .8956 .8996 .9067 .9810 .9790 .8773 .93713 13.75 17.57 11,924
Post-stem ResNet blocks .9620 .9692 .9585 .8971 .9037 .9097 .9858 .9822 .8821 .94008 44.23 17.72 10,146

B6

None .9534 .9644 .9514 .8848 .8901 .8920 .9808 .9764 .8601 .92998 18.16 40.74 10,868
No stride L0 .9625 .9715 .9628 .9093 .9139 .9168 .9912 .9871 .8881 .94618 69.97 40.74 40,186

Post-stem IR t = 1 .9590 .9685 .9542 .8986 .9036 .9072 .9850 .9830 .8841 .93938 25.48 40.77 16,304
Post-stem ResNet blocks .9625 .9707 .9597 .9054 .9073 .9138 .9836 .9813 .8817 .94181 67.07 40.98 16,356

SE-ResNet18 None .9321 .9363 .9298 .8019 .7668 .7534 .9687 .9549 .7615 .87661 9.53 11.26 3,084
No stride/pool L0 .9621 .9686 .9570 .8999 .9104 .9116 .9864 .9853 .8881 .94231 144.89 11.26 8,468

Table 5.7: wAUC, FLOPs, memory, and the number of parameters of di�erent architectures and
surgical modifications in the ALASKA II dataset.

their lack of unpooled layers. The proposed surgically modified E�cientNet architectures overcome

this issue and surpass the popular SRNet on a variety of datasets.

More broadly, this chapter confirms that o�-the-shelf successful computer vision architectures, such

as the E�cientNet, can reach unparalleled performance in JPEG steganalysis. No special elements

were added to the architecture besides the unpooled layers known to be beneficial for steganalysis.

5.7 Numerical results

We show the details of the performance of all architectures studied in this chapter for every stego

scheme and JPEG quality factor in the ALASKA II dataset in Table 5.7.
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Chapter 6

CNN Steganalyzers Leverage Local

Embedding

Recently, steganalysis has undergone an explosive development due to employment of deep convolu-

tional neural networks (CNNs) [146]. Major improvements in detection accuracy have been achieved

for all embedding algorithms and both domains. Immediately, speculations appeared about why

these detectors perform so much better than classifiers trained on high-dimensional rich media mod-

els. The usual explanation is the network’s ability to jointly optimize the image representation

(“feature formation”) as well as the classifier. Indeed, to keep the dimensionality of co-occurrences

from which rich models are built reasonably low, noise residuals need to be harshly truncated and

quantized. Furthermore, training on large datasets becomes computationally infeasible even with

low-complexity classifiers [73; 70].

There is one more fundamental di�erence between CNN detectors and rich models. The latter

are by their construction macroscopic quantities of local statistics collected in a global fashion

from the entire image. Rich models are essentially collections of histograms. This limits them to

being predominantly “integrators” of local embedding traces across the image that achieve non-

trivial detection power by leveraging some form of the Central Limit Theorem (CLT). In contrast,

CNNs do not natively form histograms, and instead process the outputs of convolutions or “noise

residuals” in a di�erent fashion that is believed to allow both integration as well as detection of

localized embedding traces. To the best of our knowledge, however, no study has been put forward

that would present evidence for this claim.
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Aided with visualization tools, we argue that CNN detectors leverage Locally Detectable Embedding

Artifacts (LDEAs) in their decision making. Leaving a few stego blocks with LDEAs in the stego

image is enough for a reliable detection even with other CNN architectures. In contrast, rich models

are not necessarily able to correctly classify all stego images with LDEAs. By taking a closer look

at modern content-adaptive algorithms J-MiPOD [176] and J-UNIWARD [19], and older embedding

schemes (F5 [117], –F5 [194], and Jsteg), we discover that LDEAs are mostly associated with content-

creating changes when the magnitude of a DCT coe�cient is increased and, especially when a high-

frequency cover DCT equal to 0 is changed to a non-zero value. Additionally, we argue that LDEAs

and inhibition play a role when training a multi-class detector to distinguish between selection

channels of di�erent embedding algorithms. Our findings provide valuable qualitative and human

interpretable feedback to the steganographer that could be taken into consideration for design of

future stego algorithms.

In the next section, we describe the datasets and detectors employed in our experiments. Section 6.2

describes visualization tools used in this work. LDEAs are defined in Section 6.3, which contains

case studies involving JPEG steganographic algorithms. In Section 6.4, we study a multi-class CNN

distinguishing between bUERD, J-UNIWARD, and covers to demonstrate that it uses inhibitory

response with LDEAs on the image boundary. Section 7.7 concludes the chapter.

6.1 Experimental Setting

6.1.1 Datasets and detectors

We use the ALASKA II 256 ◊ 256 dataset [43], which contains 3◊25,000 cover images compressed

with quality factors 75, 90, and 95. The covers were randomly divided into three sets with 3◊22,000,

3◊1,000, and 3◊2,000 images for training, validation, and testing, respectively. The images were

embedded only in the luminance channel Y . The findings of this chapter are consistent when using

the 256◊256 grayscale BOSSbase+BOWS2 cover dataset but we do not report on them due to space

constraint.

E�cientNet B4 [172] was pre-trained on ImageNet [122] and refined for steganalysis in the JPEG

domain [2; 195] with the same training schedule as in Section 4.2 in [195]. No modifications were

done to the E�cientNet B4 architecture besides changing the original Fully Connected (FC) layer

to a binary classification FC or a three-class FC in Section 6.4. We also use the SRNet [99] trained
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without pair constraint as in [2] and DCTR [81] with FLD ensemble [70].

6.2 Toolbox

6.2.1 Integrated Gradients

Integrated Gradient (IG) [196] is a technique for computing a map describing the importance of

each pixel when facing a stego image. The soft output of a CNN is a function f : RN æ R,

N = 256 ◊ 256, whose domain are 256 ◊ 256 images. The cover, stego, and the baseline image are

denoted, respectively, c, y, and b. The IG algorithm is a pixel attribution function:

„(f, y, b) = (y ≠ b) ✓
1ˆ

0

df (b + –(y ≠ b))
dy d–, (6.2.1)

where df/dy œ RN is the gradient of f w.r.t. to the input y, ✓ denotes element-wise multi-

plication, and „ œ RN . This algorithm belongs to path methods [197] and satisfies some de-

sirable properties, such as, but not limited to, linearity, symmetry preserving, and completeness
qN

p=1
„p(f, y, b) = f(y) ≠ f(b). It accumulates the gradients on convex combinations of the base-

line b and the input s. This accumulation encapsulates how the network’s output evolves from f(b)

to f(s). The multiplication by s ≠ b comes from the fact that the derivative is taken with respect to

the path “(–) = b+–(y≠b). In practice, this multiplication can be omitted as we do in Section 6.4.

The choice of b will be discussed in Section 6.2.1.1. The integral is approximated using a Riemman

sum with 100 steps and the gradient is evaluated using pytorch’s automatic di�erentiation. We use

the implementation available in the Captum library.1

The map „(f, y, b), which has the same shape as the input of the CNN, 256 ◊ 256, is then averaged

over 8 ◊ 8 non-overlapping blocks along the spatial dimensions to obtain a 256/8 ◊ 256/8 block

importance map Âr(f, y, b), r = 1, . . . , 32 ◊ 32.

6.2.1.1 Choice of the baseline: Top k insertion test

While the IG algorithm can use an arbitrary baseline, the cover version of the stego image is the

most appropriate baseline because it relates to the concept of missingness [198]. The cover represents

exactly the missing signal of interest, the stego noise. Note that when using the cover image c as
1https://github.com/pytorch/captum
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Figure 6.2.1: +TPk rate for covers +ck with top k inserted stego blocks determined using IG with
di�erent baselines: cover, random uniform, and zero. E�cientNet B4 trained for 0.5 bpnzac J-
MiPOD.

a baseline, the di�erence from the baseline in the IG algorithm are the stego changes y ≠ c in the

spatial domain. Since the cumulative gradients (6.2.1) are modulated by the stego changes, „(f, y, c)

and Â(f, y, c) are zero for pixels and blocks without any changes.

We now compare three choices for the baseline to show that the cover baseline is a suitable choice:

cover, zero, and a random image with each pixel sampled independently from a uniform distribution

on [0, 1). For each cover-stego (c, y) pair from the test set, we compute Â(f, y, c) and identify “top”

k blocks with the largest Â that contain at least one stego change. Then, we generate from the cover

c a new “stego” image, +ck, by only keeping the embedding changes in the top k blocks (blocks with

maximal attribution Â). The +TPk rate is the percentage of +ck images in the test set predicted as

stego using a decision threshold set for 10% False Alarm (FA) rate. Figure 6.2.1 shows the +TPk

for E�cientNet B4 trained on 0.5 bpnzac J-MiPOD and three types of baseline images as a function

of k. The cover image is clearly the best baseline for identifying the blocks that most increase the

confidence of the network.

Note that even though +ck are not necessarily samples of stego images (even with a lower payload),

they are natural looking images, unlike insertion/ablation evaluations done in the explainable ML

literature (c.f. [198]), where insertion/ablation tests are done by blurring/dropping areas of the
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image. This makes the inputs used in the top k insertion test fairly close to the original training

distribution.

6.2.2 Last activation

In addition to IG, we use a gradient-free localization technique which we call “last activation.” We

essentially disable the last global pooling of a CNN and use the FC layer weights and bias as a 1 ◊ 1

convolution to obtain a 16 ◊ 16 matrix for the SRNet and 8 ◊ 8 matrix for the E�cientNet B4 (for

an input of shape 256 ◊ 256). Then, we only keep the positive values in this matrix (positive logits

of the stego class) and nullify the rest (rectification) to obtain a visualizable activation map. For

example, Figure 6.2.2 shows the last activation of E�cientNet B4 for a J-MiPOD and J-UNIWARD

image and the corresponding IG block importance maps. The figure will be commented upon in

more detail in Section 6.3.4.

6.3 Locally Detectable Embedding Artifacts LDEAs

In this section, we define the concept of a Locally Detectable Embedding Artifact (LDEA) and use

the tools explained above to analyze how CNNs detect selected modern content-adaptive and old

steganographic methods. Three modern stego methods are included in the study: J-UNIWARD [19],

J-MiPOD, and bUERD [21]. The last is a version of the UERD algorithm as implemented during

ALASKA II. Among older embedding paradigms, we selected F5 [117], ≠F5 [194] which reverses the

embedding operation of F5 to increasing the absolute value of DCT coe�cients instead of decreasing

as in F5, and Jsteg [199]. For modern stego schemes, the payload was fixed at 0.5 bpnzac, while for

older schemes it was scaled down to avoid perfect detection by modern steganalyzers. The relative

payloads – (in bpnzac) for ≠F5 and Jsteg were set to induce the same number of embedding changes

m = N0ACH
≠1

2
(–≠F5) which happens when –Jsteg = 2H

≠1

2
(–≠F5), where H2 is the binary entropy.

The payloads are given in Table 6.1.

6.3.1 LDEAs from the top k insertion test

Figure 6.2.1 shows that for J-MiPOD, a sizable portion of stego images can be detected as stego

with only a few inserted 8 ◊ 8 blocks with stego changes. This is rather surprising because such
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Figure 6.2.2: Last activation (left) and IG block importance map (right) of E�cientNet B4 for image
‘27938.jpg‘ embedded with J-MiPOD (top) and J-UNIWARD (bottom). Note that both images are
detected as stego with pstego = 0.99 by E�cientNet B4.

Payload
PE MD5 wAUC(bpnzac)

J-MiPOD 0.5 .1938 .3837 .9349
J-MiPOD 0.2 .3452 .7033 .8067

J-UNIWARD 0.5 .1967 .4220 .9304
J-UNIWARD 0.2 .3606 .7658 .7792

F5 0.2 .1835 .4292 .9292
≠F5 0.05 .0866 .1248 .9827
Jsteg 0.0112 .1315 .2207 .9595

Table 6.1: Detection performance of E�cientNet B4 for stego schemes used in this chapter and a
mixture of QFs of 75, 90, and 95.
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Figure 6.3.1: E�cientNet B4’s +TPk rate as a function of top k inserted stego blocks for various
stego schemes.

images have a very small change rate, yet can be detected as stego with high confidence. We say

that these images have LDEAs.

Figure 6.3.1 shows the insertion profiles of the same top k insertion test for more embedding schemes

with payloads and performance measures shown in Table 6.1. Notice that di�erent embedding

schemes have di�erent top k insertion profiles. Also note that the location of such LDEAs in the

stego images depends on the actual realization of embedding changes. Di�erent realizations of

stego changes for the exact same payload might lead to di�erent LDEAs depending on which DCT

coe�cients are changed.

The figure also clearly shows that, despite the small payload, Jsteg and –F5 introduce very influential

LDEAs as a large percentage of stego images can be identified as stego with only a few blocks with

the highest attribution. In contrast, J-UNIWARD and F5 introduce comparatively fewer LDEAs

than J-MiPOD. This suggests that for these two algorithms the detector is more an integrator rather

than relying on LDEAs.

Conversely, in Figure 6.3.2 we show that reverting the changes in the top k blocks and keeping the

rest of the stego image intact (i.e. top k canceling instead of insertion) turns the predicted stegos
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Figure 6.3.2: E�cientNet B4’s +TPk rate as a function of top k deleted stego blocks for various
stego schemes.

into missed detection. Note that the trends are complementary to those observed for the top k

insertion test. The decision threshold was set for 90% True Positive rate.

6.3.2 Do Rich Models catch LDEAs?

Next, we contrast CNNs and rich models to find out whether rich models can detect LDEAs with any

level of confidence. To this end, we define the concept of a “strong LDEA” to eliminate cases when

the cover image already had a score close to the decision threshold. We consider k = 1 and adjust

the threshold for +c1 to have a 1% FA rate while keeping the thresholds for FAs at 10% as before.

For example, for J-MiPOD at 0.5 bpnzac, images with a strong LDEA must have f(+c1) Ø 0.89

and f(c) Æ 0.55.

Images with strong LDEAs are usually located at the left-most side of the ROC curve for E�cientNet

as shown in Figure 6.3.3, which shows the images with strong LDEAs as red dots. While they are

easy to detect by a CNN even when the only changes made in the image are in one block, in contrast,

for DCTR+FLD ensemble, LDEAs are not particularly easy to detect as stego images as shown in

Figure 6.3.3, where the red dots are scattered rather randomly on the ROC curve. Rich models
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Figure 6.3.3: ROC curve of DCTR+FLD ensemble and E�cientNet B4 for J-MiPOD 0.5 bpnzac.
Images with strong LDEAs found using IG and E�cientNet B4 are represented by red dots.

(DCTR in this case) do not catch LDEAs because of their inability to utilize localized artifacts.

6.3.3 Case study 1: J-MiPOD

Figure 6.3.2 and the previous sections discussed the existence of LDEAs introduced by J-MiPOD,

which provide overwhelming evidence to a CNN detector to predict the stego class. Figure 6.3.4

shows some examples of LDEAs that are visually identifiable. To further understand the nature of

the LDEAs, in Figure 6.3.5 we show the average changes of DCT coe�cients in each mode computed

over test images containing strong LDEAs. It shows that LDEA blocks have (i) a larger change rate

than the average 8 ◊ 8 block of J-MiPOD (ii) more changes in high frequency DCT coe�cients.

These coe�cients are usually zeros in covers, and changing them to ±1 creates unnatural artifacts.

Figure 6.3.6 shows that, indeed, the LDEA blocks of J-MiPOD have many more changes in zero

coe�cients than on average. The distribution for J-UNIWARD is given for reference.
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Figure 6.3.4: Example of visible local traces of J-MiPOD. The center 8 ◊ 8 block is the top 1
influential block using IG. Left to right images: ‘05626.jpg‘, ‘47211.jpg‘, ‘48020.jpg‘, and ‘55961.jpg‘.
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Figure 6.3.5: Average changes per mode for LDEA blocks (left) and over all blocks (right) computed
over test images containing strong LDEAs for J-MiPOD.

72



0.00 0.02 0.04 0.06 0.08 0.10
Ratio of changes of zero coe�cients

0

500

1000

1500

JUNIWARD

JMiPOD

JMiPOD LDEA blocks

Figure 6.3.6: Histogram of the ratio of changes on zero coe�cients w.r.t. all changes for J-UNIWARD
and J-MiPOD. Rug plot data points correspond to the same ratio computed only on strong LDEA
8 ◊ 8 blocks of J-MiPOD.

Additionally, LDEAs transfer between di�erent architectures. For J-MiPOD 0.5 bpnzac 82% of

SRNet’s images with LDEAs are shared with E�cientNet. Reverting the changes in top 3 influential

blocks leads to a substantial increase in Missed Detection (from .3883 to .4975 in terms of MD5 as

seen in Figure 6.3.2) for E�cientNet B4, while the DCTR+FLD ensemble missed detection stays

mainly una�ected (from .6963 to .6831 in terms of MD5). Moreover, retraining SRNet on a new

dataset where the top 3 influential blocks (computed using B4) have been reverted in all images does

not bridge that gap and still produces a significantly worse detector (from .4097 to .4878 in terms

of MD5).

6.3.4 Case study 2: J-UNIWARD

Figure 6.3.2 shows that J-UNIWARD introduces significantly fewer LDEAs than J-MiPOD even

though their detectability is very similar (Table 6.1). In fact, Figure 6.2.2 already shows an inter-

esting di�erence between the two embedding schemes when looking at their last activation map:

J-UNIWARD images tend to activate the majority of the map, whereas J-MiPOD images activate a

highly localized area. The ranges of IG block attributions also di�er with J-UNIWARD exhibiting

a rather spatially uniform attribution map unlike J-MiPOD. This seems to indicate that the net-

work is an “integrator” for most J-UNIWARD images, while it also utilizes localized information for
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Figure 6.3.7: Normalized histogram of the number of large logit cells of the last activation map of
E�cientNet B4 for J-UNIWARD, J-MiPOD, and J-MiPOD with strong LDEAs.

J-MiPOD.

To confirm this conjecture, for each image we count the number of elements in the last activation

map that exceed a threshold set as 3◊ the average of the last activation map (as we try to identify

“large logit cells” or spikes in the map). Figure 6.3.7 shows the histograms of these counts across

6, 000 test images. For J-UNIWARD, these large logit cells are almost non-existent, while for J-

MiPOD and especially J-MiPOD images with strong LDEA blocks many last activation maps are

comprised of such spikes.

6.3.5 Case study 3: Jsteg

Figure 6.3.2 shows that Jsteg introduces many LDEAs, which is not surprising since Jsteg is not

content adaptive and highly likely to produce detectable artifacts. On average, the top 1 influential

blocks of Jsteg have 98.01% of changes increasing the absolute value of the DCT coe�cients, whereas

on average across all blocks Jsteg increases the absolute value of DCT coe�cients with a rate of only

65.06%. Increasing the absolute value increases the block variance, which makes it easier to detect

in a smooth area.
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Figure 6.4.1: Attribution maps for image ‘43201.jpg‘ from the ALASKA II dataset embedded with
J-UNIWARD and bUERD from the multi-class, and binary J-UNIWARD E�cientNet B4 (from left
to right). Notice the anti-correlated attributions in the right boundary of both images from the
multi class attributions, which are not visible in the binary attributions. The figure shows only the
90% largest attributions for each map in absolute value for visual clarity.

6.3.6 Case study 4: F5, –F5

Figure 6.3.2 shows that F5 introduces very few LDEAs. Unlike other schemes, F5 only decreases

the absolute value of DCT coe�cients. For ≠F5, the LDEAs count is the largest. The culprit is the

embedding operation of increasing the absolute value of DCT coe�cients as it adds artificial content

to 8 ◊ 8 DCT blocks. This is further confirmed by comparing –F5 with Jsteg with payload scaled

to have the same number of changes as ≠F5. While Jsteg’s curve is lower than ≠F5 for k > 1, both

have the same number of strong LDEAs (for k = 1).

6.4 Multi-class detectors and stego inhibition

In this section, we briefly study a multi-class CNN detector that uses inhibition to distinguish

between embedding algorithms. To this end, we purposely selected two embedding algorithms with

very di�erent selection channels: J-UNIWARD and bUERD, which is a version of UERD that was

used in the ALASKA II competition. An implementation mistake made bUERD’s selection channel

anomalous with the embedding changes concentrated around the image boundary in most stego

images. A network able to see LDEAs should discover this flaw and exploit it for detection.

Our multi-class detector was the E�cientNet B4 trained using multi-class cross-entropy loss. In this

section, we drop the modulation by y ≠ c in Eq. 6.2.1 since we are interested in blocks with changes

by both bUERD and J-UNIWARD not only a by one of them at a time.

Given a J-UNIWARD image, the stego attribution is typically high in blocks with complex content,

while an inhibitory attribution at the image boundary. For the bUERD version of the same image,
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the attributions at the image boundary are often anti-correlated with the attributions from the

J-UNIWARD image. We call this phenomenon “stego inhibition” as the CNN uses artifact traces

from all stego schemes it was trained on. Another intuitive explanation of stego inhibition is when

the CNN predicts “this is a J-UNIWARD image and not bUERD” using inhibition of bUERD

artifacts. An example of this is shown in Figure 6.4.1. We compare this to a known phenomenon in

computer vision and neurology where neurons explicitly inhibit against features that do not make

sense in certain spatial areas. In this case, the stego noise at the image boundary is representative of

bUERD, and does not make sense for images other than bUERD (provided the boundary does not

contain complex content). Also notice in Figure 6.4.1 that the attribution of the J-UNIWARD image

from both the binary and multi-class detectors have strong similarities (outside the right boundary),

which means that both detectors have converged to detecting similar patterns.

6.5 Conclusions

Using attribution tools, we provide evidence for the popular belief that CNNs reach their decision

by detecting local embedding artifacts. By analyzing modern content-adaptive schemes and older

embedding paradigms, we characterize these artifacts and show that they are mostly associated

with high frequency content-creating changes. CNNs ability to leverage localized signals plays a

role in distinguishing between selection channels of di�erent embedding algorithms when training a

multi-class detector.
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Chapter 7

Detector-Informed Batch

Steganography and Pooled

Steganalysis

The main bulk of work in this field of steganography concerns digital images and focuses on design-

ing embedding algorithms and detectors that perform the best in a single image for a fixed relative

payload. In practice, however, the sender can adopt a smarter strategy and distribute the communi-

cated message across multiple covers to decrease the chances of being detected. On the other hand,

the Warden is also free to combine evidence from multiple images to decide whether steganography

is taking place.

Batch steganography and pooled steganalysis have been originally introduced in [200] together with

the so-called shift hypothesis, which claims that the embedding rigidly shifts detector outputs by an

amount that depends on the embedded payload size. The first batch strategies [29; 30; 31], which

focused on non-adaptive hiding schemes and quantitative detectors, concluded that the payload

should either be concentrated in as few covers as possible or spread evenly.

In [30], the author studied pooled steganalysis under the assumption that the Warden knows the

chunk sizes but not their assignment to individual images. In a di�erent setup [201], a local outlier

factor was used to identify the steganographer from among a large set of users. The topic of

learning optimal pooling functions appeared in [202]. Batch steganography with modern content-
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adaptive embedding algorithms and three ad hoc batch algorithms was studied in [32]. Adversarial

embedding [203] was extended to batches of cover images in [34] but performed poorly against an

adversarial-aware Warden. In [204], the authors considered batch steganography in JPEG images

of di�erent qualities. The optimal size of the bag for Gaussian batch embedding was studied in [33]

without considering pooled steganalysis.

The next section explains the reasoning for the setup of batch steganography and pooled steganalysis

studied in this chapter. To further motivate our work, in Section 7.2 we demonstrate that the

often adopted shift hypothesis is no longer valid for content-adaptive embedding, a fact that holds

for the previous generation of detectors built around rich models and linear classifiers as well as

modern detectors built as Convolutional Neural Networks (CNNs). In the same section, we show

that detectors exhibit highly non-Gaussian distribution on covers. Section 7.3 contains a formal

mathematical description of three pooled detectors considered in this chapter. Two novel detector-

informed batch steganographic techniques are described and theoretically analyzed in Section 7.4.

The setup of our experiments, including implementation details, is explained in Section 7.5. The

results of all experiments together with their interpretation and discussion appear in Section 7.6.

The chapter is concluded in Section 7.7.

7.1 Basic setup

In batch steganography, two actors, Alice and Bob, exchange messages hidden in digital images.

To avoid being detected by an adversary (the Warden), they use modern content-adaptive spatial-

domain steganography and adjust the payload size embedded in each image to decrease the risk of

being detected. The Warden combines the outputs of a single-image detector applied to all images

exchanged by Alice and Bob in an e�ort to discover the use of a steganographic channel and not

necessarily identify which images are cover and stego.

This problem of batch steganography and pooled steganalysis may accept many di�erent forms

depending on what information about the cover source, the steganographic method, the payload

spreading strategy, and possibly Warden’s detector is available to all actors. Following Kerckho�s’s

principle, we are mainly interested in the situation when the Warden has full knowledge of algorithms

used by Alice and Bob but not any shared secret or specific data used by the senders. In particular,

we assume that the steganographers and the Warden have access to the same source of covers,

which they can use in any way to design a payload spreading strategy as well as build detectors.
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We will also assume that the Warden knows the steganographic method that might be in use and

the payload-spreading strategy. For example, if the steganographers use feedback from a detector

to determine the size of payload chunks embedded in each image, the Warden can train the same

detector architecture on her end but it will ultimately be a slightly di�erent detector because of

di�erent training data. Moreover, the payload chunk sizes will also generally depend on the cover

images to which the Warden does not have access.

Having said this, we will at times consider a payload-aware Warden that has access to the exact

payload chunk sizes that Alice sends as a form of a worst case scenario and to evaluate the impact

of the lack of such precise knowledge.

While the steganographers may opt for a spreading strategy that is free of any assumptions about

Warden’s detector, such as the Image Merging Sender (IMS) and Detectability / Distortion Limited

Senders (DeLS / DiLS) considered in [32], they are free to guess and make use of a detector that

is likely to be used by the Warden or any other detector. The specific assumptions made in this

chapter will be clarified later based on discussions and other important experimental facts concerning

content-adaptive embedding and modern steganalysis detectors.

7.2 New context

The problem of batch steganography and pooled steganalysis has been revisited many times through-

out the history of this field. In this section, we challenge some of the assumptions made in prior art

to motivate our approach.

In [32], an argument based on the Central Limit Theorem (CLT) was made that, on cover images,

the outputs of a single-image detector that uses high-dimensional rich models and a linear classifier

is zero-mean Gaussian. Leveraging the shift hypothesis, the authors further assumed that the

embedding merely shifts this distribution by an amount that depends on the embedded payload.

The Gaussianity and the shift hypothesis allowed the authors to derive an optimal pooled detector in

the form of a matched filter, which in practice correlates detector outputs with shifts estimated from

near embedding invariants and the payload itself. Within this context, they studied the IMS and

DeLS (DiLS), the last two spreading so that the same level of detectability (distortion) is induced

in every image.

Below, we demonstrate that modern detectors not only exhibit highly non-Gaussian behavior but

also clearly fail to satisfy the shift hypothesis. This is true for both non-adaptive and content-
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Figure 7.2.1: Distribution of the soft detector output for SRNet, EfN B4, Xu2, and SRM with LCLC
trained on covers vs. uniform payload mixture of HILL.

adaptive steganography and detectors based on rich models as well as CNNs. For better readability,

the description of datasets and detectors, including their training for all experiments commented

upon in this section is postponed to Section 7.5.

7.2.1 Non-Gaussian distribution on covers

Figure 7.2.1 shows the distribution of soft outputs of four detectors on 256 ◊ 256 grayscale cover

images from ALASKA II when training them as binary detectors on cover versus stego images

embedded with a uniform mixture of payloads from {0.05, 0.1, 0.2, . . ., 1.4, 1.5} bpp. The soft

output for the Spatial Rich Model (SRM) [65] implemented with the Low Complexity Linear Clas-

sifier (LCLC) [73] is the projection of the rich feature on the weight vector. For the three CNNs,

SRNet [99], E�cient Net B4, and SE-ResNet18 (Xu2 net), the output is the logit. The cover dis-

tribution for all detectors is highly asymmetric and spiky. The distribution on covers is also clearly

non-Gaussian and bimodal for the networks with the left “hump” corresponding to “easy covers.”

While the fact that CNNs produce highly non-Gaussian outputs on both cover and stego images is

less surprising due to their inherent non-linearity, rich model features are also non-linear functions

of the image since they are higher-order statistics (histograms) of quantized and truncated noise

residuals.

7.2.2 Failure of the shift hypothesis

Figure 7.2.2 shows the distribution of two of the above four detectors on stego images embedded with

a range of fixed relative payloads. With increased payload size, the distribution gradually “morphs”
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Figure 7.2.2: Distribution of detectors’ soft output on cover and stego images embedded with HILL
for a fixed relative payload. Left: LCLC with SRM, right: SRNet. Note that the distributions
morph in a far more complex manner than a simple shift.

to the right, a�ecting mostly the distribution tails, while the peak at zero stays nearly stationary. In

fact, in order to obtain a rigidly shifted distribution, one would need to adopt a non-trivial spreading

strategy (see Section 7.4). The shift hypothesis, as originally conceived in [200], is likely limited to

quantitative detectors since their expected test statistic is the change rate (payload).

7.2.3 Complex response curves

Undoubtedly, the key element in considering the problem of spreading payload across images is the

response of the Warden’s detector as a function of the payload size – the detector’s response curve –

which depends on the cover image and the steganographic method. A cover image with a completely

flat response curve would be ideal for embedding a large payload as the embedding is “invisible” to

the detector. And this is true regardless of whether it is detected as cover or stego. On the other

hand, an image exhibiting a steep response curve should hold a comparatively smaller payload.

Since embedding a secret message is a stochastic process, the detector response naturally exhibits

a statistical spread, which increases with increased payload (see Figure 7.2.3). To eliminate this

source of randomness, we define the response curve (RC) for a given cover image and detector as the

expected value of the response over embeddings with di�erent stego keys (seeds for an embedding

simulator). In Figure 7.2.3, the RCs are rendered with thick blue lines obtained by averaging over

100 embeddings for each payload with the light blue shade used to depict the standard deviation.

The diversity of these responses is responsible for the failure of the shift hypothesis.

Note that RCs are mostly non-decreasing with the exception of a few images for which the response

decreases for very large payloads (e.g., image 10518). Despite the slight drop, the final class label
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is unlikely to flip because the logit values are still very large. While we are not certain why this is

happening, it might be due to the fact that the content-dependent stego noise for large payloads

might start resembling sensor noise in some images. To simplify our reasoning, we adopt the feasible

assumption that all RCs are non-decreasing for the entire payload range.

The RCs tell the tale of what is happening at detection. For image 14407, the RC is initially flat

and then steeply bends upwards. This is likely because the image contains some complex content

where the detection is di�cult, and once the embedding “spills over” to other parts of the image due

to increased payload, it quickly starts contributing to detectability. The flat curves of images 18259

and 12250 mean that they can hold a very large payload without changing the detector’s output.

Lastly, we point out the steep response curves for images 10518, 77793, and 08150 with smooth

content where embedding quickly becomes very detectable. Note that for image 08150, the maximal

embeddable payload is only about 1.2 bpp because the image contains wet pixels [205].

Figure 7.2.4 shows the RCs for the same six images for four di�erent detectors. Note that while

the network detectors are very di�erent deep architectures, the response curves exhibit qualitative

similarities. This justifies our choice to use detector output as feedback for batch steganography.

Finally, we remark that the steganographers must select their images randomly from their cover

source as any cover selection or rejection would skew the statistics of the cover source, a fact that

would be detected by the Warden who is testing whether her detector’s outputs are consistent with

the detector distribution on covers. Thus, the best the sender can do is to minimize the disturbance

to the distribution of Warden’s test statistic. We come back to this problem in the next section

when we lay out a more detailed formulation of our setup.

7.3 Pooled steganalysis

In this section, we describe three pooling strategies for the Warden that will be used to assess security

of batch steganography in this chapter.

We will assume that the steganographers maintain an average payload per pixel r œ [0, log2 3], the

communication rate. By the square root law [206], this means that, asymptotically, they will be

caught with near certainty. Our goal is not perfect or bounded security, which would require the

communication rate to taper o� to zero, but to minimize the detectability in each bag of images. For

simplicity, in the rest of this chapter we assume that the Warden knows r and that the embedding

method is fixed and known to all actors.

83



0

5

10

15

10518 08150

0

5

10

15

18259 77793

0.0 0.5 1.0 1.5

0

5

10

15

14407

0.0 0.5 1.0 1.5

12250

SRNet

Xu2

B4

SRM
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Let C denote the set of all possible cover images of some fixed size. A cover bag of size B, C =

(x(1)

0
, . . . , x(B)

0
), is formed by selecting B cover images x(1)

0
, . . . , x(B)

0
œ C according to some proba-

bility distribution over C. A spreading strategy S induces a unique mapping –r,S : CB æ [0, log2 3]B

that determines the relative payloads (in bpp) embedded in the B images using a ternary stegano-

graphic scheme. When r and S are clear from context, we simply write –i œ [0, log2 3] to denote the

ith component of –r,S(C), i.e., the relative payload embedded in the ith image. The map –r,S must

satisfy the payload constraint
Bÿ

i=1

–i = rB. (7.3.1)

A payload tag for rate r is the relative payload ·r,S(x(i)
0

) that the ith image receives for an infinitely

large bag.

A single-image detector is a mapping d : C æ R that assigns to each image a soft output from the

detector. The soft outputs can be thresholded for a hard cover / stego decision based on application-

dependent requirements, such as controlling the false alarm rate. The response curve for image x(i)
0

and detector d is the function Íi : [0, log2 3] æ R

Íi(–) = E[d(x(i)
– )] (7.3.2)

obtained as the expected value of d on stego images x(i)
– when embedding cover x(i)

0
with payload –

with random messages and stego keys. To distinguish the mathematical objects used by the Warden

from those used by the steganographers, we will use the superscript ’W’ for the Warden and ’S’ for

the steganographers. Pooled detectors will be denoted with the Greek letter fi.

Let f
W
0

denote the Warden’s detector distribution on covers (c.f., Figure 7.2.1). Given B images y(i),

i = 1, . . . , B, communicated by the sender and under inspection by the Warden, Y = (y(1)
, . . . , y(B)),

the Warden computes d
W(y(i)) for all images and infers whether the sender uses steganography. In

the absence of any other knowledge about the spreading strategy or the communication rate, the

Warden would face a composite hypothesis test, namely testing for a known distribution:

H0 : d
W(y(i)) ≥ f

W

0
for all i

H1 : d
W(y(i)) ⌧ f

W

0
for some i.

(7.3.3)

Note that in this chapter, unlike the rest of this dissertation, the letter y does not denote a stego

image, but an image under inspection by the Warden, which can potentially be a stego or a cover

85



image. Stego images embedded with payload – are denoted x– and cover images are denoted x0 as

described above.

7.3.1 Correlator pooling

Since we assume that the Warden knows the spreading strategy and the communication rate r, she

can test for an increase in the detector response si = Í
W

i (–i) ≠ Í
W

i (0). However, since she does not

have access to cover images, she needs to estimate the response on the cover, Í
W

i (0), or simply add

it to the modeling error. Moreover, a realistic Warden will also need to estimate the payloads –i

from the images at hand. In particular, she can obtain the estimated payload –̂i possibly embedded

in y(i) by computing the ith component of –r,S(Y). The statistical hypothesis testing problem thus

becomes
H0 : d

W(y(i)) = ›i for all i

H1 : d
W(y(i)) = ŝi + ›i for all i,

(7.3.4)

where ŝi = Í̂
W

i (–̂i) ≠ Í̂
W

i (0) is the estimated expected increase of the detector output using a

RC Í̂
W

i (–) computed from the image at hand y(i), Í̂
W

i (–) = E[dW(y(i)
– )], where y(i)

– is image y(i)

embedded with relative message –, and ›i is the modeling error.

In the simplest case of independent Gaussian noise samples ›i ≥ N (0, ‡
2

i ), the optimal detector would

be the generalized matched filter (correlator) [207]. In our work, we experimented with several

di�erent forms of the estimators, including the estimator used in [32] that used near embedding

invariants. In the end, the best overall performance was achieved with a pooled detector in the form

of a correlator

fiCOR(Y) =
Bÿ

i=1

d
W(y(i))“(–̂i), (7.3.5)

where d
W(y(i)) are detector outputs on the analyzed images and “(–) is a logistic fit to embedding

shifts Í̂
W

i (–) ≠ Í̂
W

i (0) across a dataset of cover images i.

7.3.2 LRT pooling

Another possibility for the Warden is to test whether the detector output for the ith image is

consistent with the distribution of her detector f
W

–̂i
on stego images all embedded with the same
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relative payload –̂i:
H0 : d

W(y(i)) ≥ f
W

0
for all i

H1 : d
W(y(i)) ≥ f

W

–̂i
for all i

(7.3.6)

with the optimal pooled detector being the log-likelihood ratio

fiLRT(Y) =
Bÿ

i=1

log
f

W

–̂i

!
d

(w)(y(i))
"

f
W
0

!
d(w)(y(i))

" . (7.3.7)

7.3.3 Tag based pooling

We also consider the pooling strategy where the Warden makes use of the tags ·i = ·r,S(x(i)
0

) and

trains her single-image detector as a binary classifier between covers and stego images embedded

with tags. For large enough bags, this is the correct stego source from which the sender draws their

images. Note that the stego source only depends on the spreading strategy S and rate r. We make

an argument that, for large bags and for images in the bags selected randomly, the optimal pooling

strategy is averaging the detector logits. This is because all three deep learning architectures used in

this chapter apply average pooling1 in the last convolutional layer before the fully connected layer.

If averaging the detector outputs across all images in the bag was not the best strategy, one could

obtain a better single-image detector by splitting each image into smaller tiles, applying the network

to the tiles and learning a more sophisticated strategy for combining the outputs. In summary, for

a tag-based single-image detector t
W, our pooling strategy is

fiTAG(Y) = 1
B

Bÿ

i=1

t
W(y(i)). (7.3.8)

7.3.4 Average pooling

As the last option considered in this chapter, we added a fourth baseline pooling strategy in the

form of a simple average of detector outputs on analyzed images y(i):

fiAVG(Y) = 1
B

Bÿ

i=1

d
W(y(i)). (7.3.9)

We also experimented with the max pooling strategy fiMAX(Y) = maxi d
W(y(i)) but do not report

on it because it performed very poorly w.r.t. the other strategies.
1
The word ’pooling’ not to be confused with pooling as used in pooled steganalysis.
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Note that in this chapter, we will consider both a payload-aware Warden that knows the senders’

payloads –i as well as a realistic Warden that needs to estimate both from the image at hand.2

7.4 Batch steganography

In this section, we describe two types of detector-informed spreading strategies depending on the

adopted statistical model for the cover source. We also provide theoretical analysis of both senders

under certain simplifying assumptions. This analysis will be used to better understand and interpret

the experimental results in Section 7.6. The sender’s single-image detector will be denoted d
S.

7.4.1 Shift limited sender

The Shift Limited Sender (SLS) enforces the shift hypothesis by considering the impact of the

embedding on the statistical distribution of detector outputs across cover images. To embed an

average communication rate r in B cover images x(i)
0

, the SLS sender finds the smallest ” > 0 that

leads to the same expected detector output shift when embedding payload –i in x(i)
0

, satisfying
qB

i=1
–i = rB, and

” = Í
S

i (–i) ≠ Í
S

i (0) (7.4.1)

for all i for which Í
S

i

1
–max(x(i)

0
)
2

≠Í
S

i (0) Ø ”, where –max(x(i)
0

) Æ log2 3 is the maximal embeddable

payload in x(i)
0

equal to the relative number of non-wet pixels. For images that do not satisfy this

condition (images with flat response curves), we set –i = –max(x(i)
0

).

As explained in Section 7.5 in more detail, the SLS was implemented numerically using unidirectional

search for ” with the image response curves.

To obtain better insight, below we derive a closed form for the payload by adopting a linear model

for response curves:

Í
S

i (–i) ≠ Í
S

i (0) = bi–i, (7.4.2)

with bi > 0. This means that we essentially assume that the RCs are not completely flat, and we

ignore the upper bound on –i Æ –max(x(i)
0

).

Since the SLS requires bi–i = ” for all images in the bag, the payload constraint (7.3.1) implies that
2
More on this appears in Section 7.6.2.
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” = rB/
qB

i=1
1/bi, which gives us the following expression for –i

–i = rB

bi
q

k=1

1

bk

. (7.4.3)

7.4.2 Minimum deflection sender

The Minimum Deflection Sender (MDS) considers a statistical model for each scene rather than

across images. The specific cover used by the sender is a sample from an acquisition oracle taking

images of the same scene with the same acquisition device. Sensor noise and possibly small spatial

shifts and rotations due to camera shake would contribute to the randomness.

The main advantage of this approach is that the detector output on such cover images is well modeled

by a Gaussian distribution due to the fact that the detector can be linearized on the neighborhood of

the noise-free cover image. We assume that the embedding changes the expectation of the detector

output based on the response curve but does not change the variance. Hence, the sender determines

the payloads to minimize the power of the most powerful detector for the following hypothesis testing

problem:
H0 : d

S(y(i)) ≥ N (µi, ‡
2

i ) for all i

H1 : d
S(y(i)) ≥ N (µi + si, ‡

2

i ) for all i,

(7.4.4)

where µi is the expected value of d
S on cover images generated by the acquisition oracle for the

ith image and si is the expected increase of detector response due to embedding payload –i. Note

that in (7.4.4) we assume that the acquisition variance dominates the variance due to embedding a

random message, hence the variances are equal under both hypotheses. For a clairvoyant Warden

who uses the same detector d
W = d

S and knows µi and ‡
2

i , with cover images drawn independently

from the cover source, the most powerful detector is the likelihood ratio test, which assumes the

form of a mean-shifted Gauss-Gauss problem. Thus, its performance is determined by the deflection

coe�cient
qB

i=1
s

2

i /‡
2

i .

For practical implementation, we will assume that d
S(x(i)

0
) = Í

S

i (0) ¥ µi is approximately equal to

the expected detector output across all acquisitions. Hence, the MDS selects the –i to be embedded

in x(i)
0

that minimizes the deflection3

�2 =
Bÿ

i=1

!
Í

S

i (–i) ≠ Í
S

i (0)
"2

‡
2

i

. (7.4.5)

3
As explained in Section 7.5, for the MDS we use a logistic fit to the RCs instead of the RCs to allow for a more

e�cient gradient descent based search algorithm.
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While our assumptions about Warden’s access to d
S and µi and ‡

2

i are too idealistic, we can claim

that the MDS considers the worst case scenario. Since estimating the variances ‡
2

i experimentally

using the acquisition oracle would be far too elaborate and even infeasible in many cases, we further

simplify the MDS by assuming that the variances ‡
2

i are all approximately the same. Experiments

on Monobase [134] with simulated acquisition at higher ISO (as in Natural Steganography [134])

confirmed that the detector variance is indeed rather stable across di�erent scenes.

To obtain insight into how the MDS assigns payloads, we again derive a closed form expression for

–i using the linear model (7.4.2) for the response curves Í
S

i (–i) ≠ Í
S

i (0) = bi–i. To minimize the

deflection �2 with equal variances ‡
2

i = ‡
2 subject to the payload constraint (7.3.1), we find the

stationary point of the Lagrangian

L = 1
2

nÿ

k=1

b
2

k–
2

k ≠ ⁄

A
nÿ

k=1

–k ≠ rB

B
, (7.4.6)

which yields the closed form for MDS payloads

–i = rB

b
2

i

qB
k=1

1

b2
k

. (7.4.7)

7.5 Implementation

In this section, we list the details regarding our implementation of the batch steganography algo-

rithms as well as the detectors.

7.5.1 Datasets

The dataset is the ALASKA II split into three parts (Split 1, 2, and 3), each containing 25,000

images further split into 22k, 1k, and 2k images for training, validation, and testing. The splits are

used to study the impact of a mismatched training set for training Warden’s detector. The images

were developed as in [43] without the final JPEG compression step. Alice uses the test set of Split

1 to send her secret messages in bags of size B by sampling B images with replacement.

Because of the sheer amount of possible combinations of the steganographer’s detector, the Warden’s

detector, stego schemes, communication rates r, bag sizes, and spreading / pooling strategies, we

limit our exposition to the steganographic scheme HILL4 and mainly the rate r = 0.3 bpp. Instead
4
In particular, since we observed qualitatively and quantitatively similar conclusions for MiPOD, the results are
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of reporting the complete set of results for all possible setups, we highlight the most interesting and

relevant findings.

7.5.2 Single-image detectors

For spreading, the sender uses a single-image detector d
S in the form of an SRNet (SRNet1) trained

on Split 1. Splits 2 and 3 are used by the Warden who will train d
W as another instance of SRNet

(SRNet2) on Split 2, Xu2 on Split 2, EfN B4 on Split 3, and SRM on Split 3. EfN B4 and Xu2

were modified by removing the average pooling and strides from the first two layers as described

in [2]. All network detectors are pre-trained on ImageNet, SRNet was pre-trained on a binary task of

steganalyzing J-UNIWARD [19] (the so-called JIN pre-training exactly as described in [120]), while

the other networks were pre-trained on the ImageNet classification task.5 Steganalysis training on

HILL / MiPOD is done with relative payloads randomly drawn from the uniform distribution on

the set of relative payloads P = {0.05, 0.1, 0.2, . . ., 1.4,1.5}.

We also add another, qualitatively di�erent single-image detector based on the Spatial Rich Model

(SRM) [65] and the LCLC, also trained on payloads randomly uniformly drawn from P.

7.5.3 Pooled detectors

For the correlator pooling strategy, the Warden uses her test set to fit a logistic curve to the

embedding shifts Í
W

i (–) ≠ Í
W

i (0) to obtain “(–). The logistic curve is defined as

p(x) = a

1 + ec(x≠m)
+ h, (7.5.1)

with 0 < a, m < Œ, ≠Œ < c < 0, h œ R, and the fit is performed using non-linear least squares6

initialized at (a, m, c, h) = (1, 1, ≠1, 0).

For the LRT pooling strategy, the Warden embeds her test set with a set of relative payloads P =

{0.05, 0.1, 0.2, . . ., 1.4,1.5}. Then she proceeds to estimate the distribution of the detector’s output

f
W
– for each – œ P.7 To cover the entire range of possible payloads, the Warden linearly interpolates

between likelihoods evaluated at the payload grid P.

not reported.
5
Downloaded from https://github.com/rwightman/pytorch-image-models

6
Using scipy’s curve_fit function

7
Using scipy’s gaussian_kde function
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For the tag-based poolers, the Warden fine-tunes her single image detectors on a dataset embedded

with tags computed by randomly grouping all training images into bags of B = 100. Note that the

Warden has to train a tag-based pooler for each spreading strategy and average communication rate.

7.5.4 Senders

The IMS was implemented by considering a given bag of B images each with N pixels as a single

large image into which the total payload of rBN bits was embedded using an embedding simulator.

The costs were pre-computed from single images. We would like to point out that this version of

the IMS di�ers from the implementation used in [32]. There, the authors first pre-computed tags

for all images from their dataset and then simply selected B images for a given bag. Thus, the

communication rate r varied from bag to bag, and was maintained across bags only in expectation.

This di�erence is rather important as will become apparent when studying the detectability as a

function of B.

The SLS was implemented by searching for the smallest ” satisfying (7.4.1) using unidirectional

search. The SLS uses the RCs estimated from 100 embeddings of the cover image as explained

in Section 7.2.3, and linearly interpolates between grid points to cover the entire range of possible

payloads.

The MDS makes use of the same logistic model as in (7.5.1), fit to each RC. A projected gradient

descent with momentum initialized with IMS payloads for each bag was used to search for the

payloads that minimize the deflection (7.4.5). To facilitate convergence, the learning rate and

momentum were updated according to a one-cycle scheduler [208]; the learning rate and momentum

fluctuated within the intervals [10≠2
, 102] and [.90, .99], respectively. To comply with the payload

constraint and bounds 0 Æ –i Æ –max(x(i)), at each step of the gradient descent the vector of

payloads was projected to the feasible set of points, a hyperplane formed by (7.3.1) contained within

the B-dimensional box [0, –max(x(1))]◊ . . . ◊[0, –max(x(B))].

7.6 Experiments

This section contains the results of all our experiments and their discussion. In particular, the

proposed detector-informed senders are evaluated against the IMS with four pooling strategies.
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Figure 7.5.1: Detection accuracy of Warden’s SRNet2 in terms of wAUC versus the bag size for IMS
(top left), SLS (top right), and MDS (bottom) with four di�erent pooling strategies.
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Substantial space is devoted to studying the impact of the information available to the Warden as

well as the e�ect of Warden’s choices for the single-image detector.

7.6.1 Best spreading and pooling strategies

In this section, we compare the SLS and MDS and the previously proposed IMS. We also evaluate

all poolers to see which pooling strategy is the best. We do so for a range of bags and one fixed

setup with r = 0.3 bpp and HILL. The Warden uses the same architecture as the senders, the

SRNet, trained on Split 2 (SRNet2) because it is not feasible to assume that the Warden has the

same training set. In this section, we give the Warden the exact payloads –r,S(C) that might be

embedded in each bag. In reality, the Warden would have to estimate the payloads for each bag,

which is likely to decrease the detectability. We simplify here because executing experiments at scale

with having to estimate the payloads is very time consuming as the Warden needs to estimate the

average response curves w.r.t. her detector for all images in the bag. In Section 7.6.2, we show that

the e�ect of using the estimated payloads leads to only a small drop in detection accuracy and thus

does not a�ect the results or our conclusions much.

The detection performance of pooled detectors is reported using the weighted Area Under the ROC

Curve (wAUC) as used in ALASKA II [43]. We note that the pooled detector makes a binary

decision about each bag being either cover or stego. Figure 7.5.1 shows the wAUC of four di�erent

poolers versus the bag size. Both detector-aware senders o�er much better security when compared

to the detector-agnostic IMS.

Note that for all senders, as the bag size grows, the detectability initially decreases and eventually

starts increasing due to the Square Root Law since the senders maintain a positive communication

rate r. The initial drop, which is far more pronounced for the two detector-aware senders, can

be explained by considering the response curves. If a bag contains an image with a nearly flat

response curve, it will be embedded close to its maximum capacity while other images will receive

smaller payloads. Taking a bag of two as an example, it is more advantageous for the sender to

embed payload 0.6 bpp in one of the images rather than 0.3 in each. The spreading thus initially

helps decrease detectability to a point when the SRL starts engaging and the bags provide more

data to reach a more reliable decision about the use of steganography. Note that this result is in

stark contrast with the behavior of the IMS from [32] because the IMS there worked with fixed tags

attached to all images and only embedded a given relative payload in each bag on average. Thus,
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Figure 7.6.1: Distribution of relative payloads across the training dataset for IMS, SLS, and MDS for
bag size B = 100. Note that the new detector-informed senders are far more aggressive in assigning
payloads to images with most images either being embedded with small payloads and a significant
fraction embedded fully.

it was unable to utilize the e�ect discussed above. Our concept of batch steganography in bags is

more flexible and makes better use of the available cover images especially for small bags.

Continuing our discussion of Figure 7.5.1, we now comment on which poolers are the most e�ective

in detecting batch steganography across the same range of bag sizes and for all three senders. For

large bags, the best detection is obtained with the tag-based detector across all three senders because

it is trained on the closest stego source. The correlator fiCOR and the LRT fiLRT typically provide

similar performance and are significantly better than the simple average fiAVG. This di�erence

is most striking for the MDS because the simple average is essentially a correlator with uniform

payloads. Thus, the more non-uniform the payload distribution is the larger the di�erence (see, e.g.,

the performance of fiAVG versus fiCOR across the senders).

The poor performance of the tag-based pooler for small bag sizes is understandable because, as a

binary detector on stego images embedded with tags, it performs poorly (and is also more di�cult

to train) as less than 14% of images have payload larger than 0.05 bpp with a high number of images

with extremely small payloads. It starts being e�ective only for larger bag sizes, which are more

likely to contain almost fully embedded images.

In Figure 7.6.1, we display the histogram of payloads embedded in images from the training set

for all three senders, B = 100, and r = 0.3 bpp. The SLS and MDS are clearly much more

aggressive in using certain images close to their maximal embedding capacity than the IMS. This is

because these senders are aware of the fact that the embedding is “invisible” to the sender’s SRNet.

Understandably, this leads to a large gain in security at least as long as the Warden uses the same

type of single-image detector. If the Warden uses a di�erent detector for pooled steganalysis, the

95



0

5

50571 16953

0

5

12135 38163

0

5

29092 25597

0.0 0.5 1.0 1.5

0

5

16524

0.0 0.5 1.0 1.5

30928

IMS

SLS

MDS

Figure 7.6.2: SRNet’s response curves for a bag of 8 images with payloads allocated to each image
by IMS, SLS, and MDS marked on the x-axis.

almost fully embedded images may become detectable if their response curves are not as flat as the

sender’s. We take a look at this important aspect in Section 7.6.3.

Figure 7.6.1 also shows that MDS is slightly more aggressive than SLS in allocating very large or

very small payloads. This can be understood from Eqs. (7.4.3) and (7.4.7) showing the payloads as

functions of the RC slopes. The payload of the MDS is inversely proportional to the square of the

slope, making this sender more agressive when allocating the payload than the SLS. Figure 7.6.2

compares the three senders IMS, SLS, and MDS for a given bag of 8 images. For images 50571, 38163,

and 29092, which have a flat response curve, the detector-aware senders embed larger payloads than

the detector-agnostic IMS. For images with an increasing RC, such as 30928 and 25597, SLS and

MDS are more conservative than IMS and allocate a smaller payload.

As the last experiment of this section, we include a study of the e�ect of the average communication
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Figure 7.6.3: Detection accuracy of the best pooler of SRNet2 for SLS versus the bag size B and
four communication rates r.

fiLRT fiCOR

B 16 64 16 64
SLS .719 / .718 .750 / .746 .706 / .707 .745 / .756
MDS .742 / .735 .771 / .757 .733 / .737 .780 / .768

Table 7.1: Accuracy (wAUC) of Warden’s detectors for two senders, two bag sizes, and two pooling
strategies with exact / estimated payloads. Warden’s single-image detector is SRNet2, HILL 0.3
bpp.

rate r on the optimal bag size. We limit our study to the SLS and SRNet2 as Warden’s detector.

Figure 7.6.3 shows wAUC of the best pooler as a function of the bag size for four rate r. Note that

with increased rate the dip becomes shallower and also starts moving towards smaller bag sizes.

7.6.2 E�ect of estimating the payloads

In any realistic scenario, the Warden may know the algorithms used to embed and spread the

payloads but not Alice’s data. All three senders compute the payload size to be embedded in each

image from the cover image itself. The Warden, however, will need to estimate the payloads from the

images at hand. The embedding changes themselves may skew the estimated payload size should

the Warden estimate from a stego image. For the IMS, the e�ect of the embedding changes on

computing the embedding costs (or Fisher information for model-based steganography) is known to

be practically negligible [78; 209]. For the new detector-aware senders, however, the payloads are

also determined from the cover response curves, which are more sensitive to the embedding itself.

For an image that receives a large payload, the Warden may end up with a very di�erent response
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Figure 7.6.4: ROCs of pooling strategies using Warden’s SRNet2 with exact and estimated payloads;
fiLRT for SLS with bag size 16 (top) and fiCOR for MDS with bag size 64 (bottom) for HILL at r = 0.3
bpp.

curve. Thus, even if she knows the spreading strategy, the communication rate, and the type of the

detector used by the senders, the payloads that potentially reside in the images will be subject to

an estimation error and lower the detection accuracy. We study this e�ect in this section.

First, it is hard to imagine that it would be advantageous for the Warden to intentionally mismatch

the payloads potentially embedded in the images. Thus, the Warden should estimate them using a

detector that is as close to the senders’ detector as possible. As our first experiment, in Table 7.1

we compare the accuracy of the pooled detectors for a Warden who trains

1. SRNet2 on her dataset for d
W but uses the knowledge of the exact payloads –r,S(C).

2. SRNet2 on her dataset for d
W and uses SRNet2 for estimating the payloads from the images

at hand –r,S(Y).

Note that Case 1 corresponds to the setup assumed in the previous section. In Figure 7.6.4, we show

the ROCs corresponding to two selected entries of Table 7.1. While estimating the payloads leads

to a performance drop, the e�ect is minimal because most images in the bag hold small payloads

and thus their response curves are close to the response curves of the corresponding covers. For

images embedded with medium to large payloads, which however form a small portion of each bag,

the estimated payloads may be very di�erent. Figure 7.6.5 shows the the relative payloads used by

the sender as determined from her version of SRNet1 versus payloads estimated using SRNet2 by
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Figure 7.6.5: Payloads estimated by the Warden using SRNet2 versus the true embedded payloads
as determined by the senders using SRNet1 for the SLS (top) and MDS (bottom). Bag size 16,
HILL, r = 0.3 bpp.

the Warden from a HILL stego bag for SLS and MDS for B = 16 and r = 0.3 bpp.

7.6.3 Devious Warden

Since the SLS and MDS use feedback from a detector, while being more powerful than IMS when the

Warden uses the same type of detector for pooling, they could potentially become vulnerable when

the Warden intentionally or unintentionally mismatches the single-image detector. In this section,

we study such a devious Warden who trains a di�erent architecture (or a completely di�erent single-

image detector) on her training set. Since the e�ect of using payloads estimated from the images at

hand instead of exact ones is small, we give the Warden the exact same payloads for pooling. This

has been adopted for simplicity due to excessive computational cost of having to estimate the average

response curves. Moreover, it helps us isolate the e�ect of the mismatched detector for pooling. The

experiments were carried out for the SLS, MDS and IMS with SRNet2, EfN B4, Xu2, and SRM for

a range of bag sizes. The results displayed in Table (7.2) show that the Warden indeed may gain

from mismatching the detector. The gain is, however, quite small, and the detector-aware senders

still exhibit a much better security than the IMS. In Figure (7.6.6), we show wAUC of Warden’s

best detector from among 16 di�erent possibilities (four pooling strategies and four single-image

detectors) as a function of the bag size. The new spreading strategies perform significantly better

than IMS, even when considering di�erent CNN architectures, training sets, and a very di�erent
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B / fi 16 / fiLRT 64 / fiTAG

SRNet2 Xu2 B4 SRM SRNet2 Xu2 B4 SRM
SLS .7190 .7324 .7209 .6799 .8382 .7973 .8567 .7127
MDS .7416 .7259 .7393 .7030 .8150 .7806 .8421 .7166
IMS .8902 .8836 .8877 .6664 .9858 .9907 .9842 .7244

Table 7.2: Accuracy (wAUC) of Warden’s detectors for three senders, two bag sizes, with two pooling
strategies for HILL 0.3 bpp.
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Figure 7.6.6: Accuracy (wAUC) of the best detector and best pooling strategy versus the bag size
for IMS, SLS, and MDS. The best detector for each setting is highlighted using a di�erent marker.

100



detector (SRM) than what Alice uses.

7.7 Conclusions

When communicating using steganography, the sender can be clever and choose to split the desired

secret message among a bag of cover images to avoid being detected. In this chapter, we determine

the sizes of the payload chunks by inspecting how each image in the bag reacts to embedding in

terms of changing the soft output of a steganography detector as a function of the payload size, the

image’s “response curve.” Two such detector-informed senders are investigated for spatial-domain

steganography: 1) a sender that makes sure that all images in the bag experience the same shift in

the detector response and 2) a sender that minimizes the sum of squares of the shifts, which can

be interpreted as a deflection coe�cient for a binary test distinguishing stego images from covers

naturally corrupted by acquisition noise.

Using feedback from a detector indeed brings substantial improvement over the previously proposed

image-merging sender that considers the bag as a single large image. The detectability as a function

of the bag size for a fixed secret communication rate initially decreases, because the sender makes

better use of all available covers, and then starts increasing due to the square root law since a fixed

rate is maintained. We experimentally determined that the optimal bag size is 8–16 images per bag

depending on the average communication rate.

On the detection side, we study three di�erent strategies for the Warden to pool the outputs of

her single-image detector: 1) correlator of the outputs with the expected detector output increase,

2) likelihood ratio test based on actual models of the detector output, and 3) detector trained on

payload tags that the images would receive for su�ciently large bags. The likelihood ratio was the

best pooling strategy for small to moderate bag sizes up to 16 while the tag based detector performed

better for bag sizes larger than 16.

Using feedback from a detector for spreading can potentially backfire as the Warden may use a

di�erent detector for pooling. We looked into this issue in great detail by training alternative deep

learning architectures as well as older rich-model based detectors. We discovered that doing so

increases the Warden’s accuracy, but not substantially and the detector-aware senders are still much

more secure than the IMS.

In the future, we intend to further investigate the problem of optimal bag size by modeling the

statistical collection of response curves. We also intend to explore the JPEG domain.

101



Chapter 8

Conclusion

Steganography and steganalysis of digital images were always considered to be vastly di�erent from

computer vision tasks. For this reason, many special ingredients were introduced and believed

to be crucial in the success of deep learning methods in steganography and steganalysis. While

deep learning models trained with these special ingredients outperformed the previous generation

of feature-based statistical models, this dissertation proves that carefully getting rid of the special

ingredients makes these models even more powerful. This dissertation also showcases some of the

opportunities good steganography detectors bring when used as feedback for designing new stegano-

graphic schemes.

In the first part of this dissertation, I describe some of the challenges faced by deep learning in

steganography and steganalysis and the solutions I proposed. First I describe the intriguing failure

of convolutional neural networks in JPEG steganalysis due to their inability to build simple statistics

in the DCT domain. The OneHotConv layer introduced to solve this issue turned out to be a great

general purpose layer for modeling DCT coe�cients for steganalysis and image forensics. Next, I

tackle the di�culty of training models for each JPEG quality coe�cient, I show that models can

be trained on carefully designed ranges of JPEG quality factors without any loss of accuracy or

robustness to perturbations in the quantization tables. This drastically reduces the computational

cost of practical steganalysis.

In the next part I describe how my team and I used standard o�-the-shelf computer vision convolu-

tional neural network architectures in the ALASKA II steganalysis challenge. These networks were

pre-trained on the large image classification dataset ImageNet, and fine-tuned for steganalysis with
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very little domain tricks. Next I show that some simple targeted modifications to the architectures

of these pre-trained models can increase their performance even more, these modifications aim at

preserving high resolution feature maps in the first layers which improves their capacity to model

the image noise.

In the last part of this dissertation, I turn to extracting human-interpretable feedback as to how

state-of-the-art convolutional neural networks reach their decision. The folklore has it that, unlike

older feature-based methods, which rely on a global accumulation of local handcrafted statistics, con-

volutional neural network can leverage spatially localized signals. I adapt existing interpretability

tools to show that convolutional neural networks can indeed find overwhelming evidence for stega-

nography from a few highly localized embedding artifacts. This constitutes the first opportunity for

steganographers in designing future steganographic algorithms using human-interpretable feedback

from trained detectors. Next I show that using an algorithmic feedback from state-of-the-art ste-

ganography detectors can give substantial gains in the context of batch steganography, where the

sender uses a trained detector to determine an optimal way to spread the payload among a bag of

images.

The findings presented in this dissertation hopefully pave the way for new avenues in steganography

and steganalysis where deep learning is used to train high quality steganography detectors, and

also serves as a companion for the steganographer to design better steganography, just as older

feature-based methods did.
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