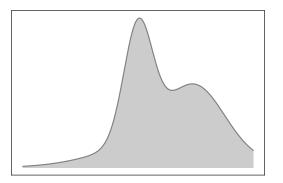
#### Introduction to Mixture Models

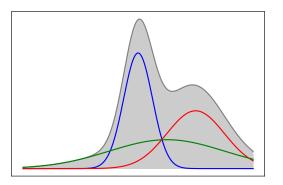
Yassine Yousfi

**EECE 566** 

#### Introduction

- Real life measurements are usually more complex than simple distributions we studied (Gaussian, Laplace, etc.)
  - Can be multimodal
  - Can come from multiple sensors with different precisions
- We will extend to more complex probability distributions: Mixture models





• Let  $\lambda_1, \ldots, \lambda_M \in [0,1]$ , verifying  $\sum_i \lambda_i = 1$ . And  $f_i(\theta_i)$  potentially different types of probability distributions parametrized by  $\theta_i$ . A mixture model can be written as:

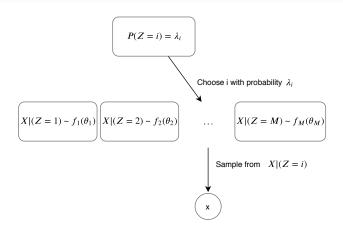
$$p(x; \theta_1, \dots, \theta_M, \lambda_1, \dots, \lambda_M) = \sum_{i=1}^M \lambda_i f_i(x; \theta_i)$$

Alternatively:

$$Z \in \{1, \dots, M\} \sim P(Z = i) = \lambda_i$$

$$X|Z \sim f_{X|Z}(\theta_Z)$$

$$X \sim \sum_z f_{X|Z}(X|Z = z; \theta_z) p(Z = z) = \sum_{i=1}^M \lambda_i f_i(\theta_i)$$



• Is  $f(x; \theta_1, \dots, \theta_M, \lambda_1, \dots, \lambda_M)$  a pdf? By definition ...

$$f(x; \theta_1, \dots, \theta_M, \lambda_1, \dots, \lambda_M) = \sum_{i=1}^M \lambda_i f_i(x; \theta_i) \geq 0$$

$$\int_{\mathcal{X}} f(x; \theta_1, \dots, \theta_M, \lambda_1, \dots, \lambda_M) dx = \int_{\mathcal{X}} \sum_{i=1}^M \lambda_i f_i(x; \theta_i) dx$$

$$= \sum_{i=1}^M \lambda_i \underbrace{\int_{\mathcal{X}} f_i(x; \theta_i) dx}_{=1}$$

$$= \sum_{i=1}^M \lambda_i = 1$$

### **Example: finite Gaussian mixtures**

• 
$$p_i(\theta_i) = \mathcal{N}(\mu_i, \sigma_i^2)$$
:

$$f(x; \theta_1, \dots, \theta_M, \lambda_1, \dots, \lambda_M) = \sum_{i=1}^M \lambda_i \mathcal{N}(x; \mu_i, \sigma_i^2)$$
$$= \sum_{i=1}^M \lambda_i \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(\frac{-(x - \mu_i)^2}{2\sigma_i^2}\right)$$

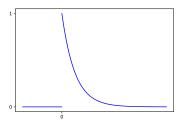
#### Uncountable mixture models

- We sample from a continuous set of parameters
- ullet Prior knowledge  $f(\lambda)$  of how these parameters have to be sampled (potentially parameterized)
- Simplifying assumption: same family of probability distribution model, parametrized from random samples of  $f(\lambda)$ :

$$egin{array}{lcl} Z & \sim & f_Z(\lambda) \ {
m prior} \ X|Z & \sim & f_{X|Z}( heta_Z) \ X & \sim & \int_{\mathcal{Z}} f_{X|Z}(X|Z=z; heta_z) f_Z(z;\lambda) {
m d}z \end{array}$$

• We sample a variance  $\sigma^2$  from an Exponential distribution:

$$f_{\sigma^2} = \begin{cases} e^{-t} & t \ge 0\\ 0 & t < 0 \end{cases}$$



• And use this variance in  $\mathcal{N}(0, \sigma^2)$ 

- $Z = \sigma^2$
- $f_Z(\lambda)$ : Prior is exponential
- No  $\lambda$ : Prior is not parametrized
- $f_{X|Z}(\theta_Z) = \mathcal{N}(0, \sigma^2)$ : Mixture elements are Gaussian r.v.'s

$$f(x|\sigma^2 = t) = \frac{1}{\sqrt{2\pi t}} \exp\left(\frac{-x^2}{2t}\right)$$

$$f(x) = \int_0^{+\infty} f(x|\sigma^2 = t) f_{\sigma^2}(t) dt$$

$$= \int_0^{+\infty} \frac{1}{\sqrt{2\pi t}} \exp\left(\frac{-x^2}{2t}\right) \exp(-t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} \frac{1}{\sqrt{t}} \exp\left(\frac{-x^2}{2t} - t\right) dt$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} \frac{1}{\sqrt{t}} \exp\left(\frac{-x^2}{2t} - t\right) dt$$
(substitution)  $y = \sqrt{t}$ :  $= \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} 2 \exp\left(\frac{-x^2}{2y^2} - y^2\right) dy$ 

$$\frac{x^2}{2y^2} + y^2 = \left(y + \frac{|x|}{\sqrt{2}y}\right)^2 - \sqrt{2}x$$

$$z = y + \frac{x}{\sqrt{2}y} : \dots$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} \frac{1}{\sqrt{t}} \exp\left(\frac{-x^2}{2t} - t\right) dt$$
(substitution)  $y = \sqrt{t}$ :  $= \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} 2 \exp\left(\frac{-x^2}{2y^2} - y^2\right) dy$ 

$$\frac{x^2}{2y^2} + y^2 = \left(y + \frac{|x|}{\sqrt{2}y}\right)^2 - \sqrt{2}|x|$$

$$z = y + \frac{|x|}{\sqrt{2}y} : \dots$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} \frac{1}{\sqrt{t}} \exp\left(\frac{-x^2}{2t} - t\right) dt$$
(substitution)  $y = \sqrt{t}$ :  $= \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} 2 \exp\left(\frac{-x^2}{2y^2} - y^2\right) dy$ 

$$\frac{x^2}{2y^2} + y^2 = \left(y - \frac{|x|}{\sqrt{2}y}\right)^2 + \sqrt{2}|x|$$

$$z = y - \frac{|x|}{\sqrt{2}y} : \dots$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} \frac{1}{\sqrt{t}} \exp\left(\frac{-x^2}{2t} - t\right) dt$$
(substituition)  $y = \sqrt{t}$ :  $= \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} 2 \exp\left(\frac{-x^2}{2y^2} - y^2\right) dy$ 
(substitution)  $z = y - \frac{|x|}{\sqrt{2}y}$ 

$$\begin{cases} y \to 0 & \Rightarrow z \to -\infty \\ y \to +\infty & \Rightarrow z \to +\infty \end{cases}$$

$$z^2 = y^2 + \frac{x^2}{2y^2} - |x|\sqrt{2}$$

(substitution) 
$$z=y-\frac{|x|}{\sqrt{2}y}$$
 
$$z=\frac{\sqrt{2}y^2-|x|}{\sqrt{2}y}$$
 
$$y^2-zy-|x|/\sqrt{2}=0$$
 
$$\Delta=z^2+4|x|/\sqrt{2}$$
 
$$y=\frac{z\pm\sqrt{\Delta}}{2}=\frac{z\pm\sqrt{z^2+4|x|/\sqrt{2}}}{2}\geq 0$$
 
$$\mathrm{d}y=\frac{1}{2}\left(\mathrm{d}z+\frac{2z\mathrm{d}z}{2\sqrt{z^2+4|x|/\sqrt{2}}}\right)$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} 2 \exp\left(-z^2 - \frac{\int_{-\infty}^{\infty} \sin(z) \sin(z)}{|x|\sqrt{2}}\right) \left(\frac{z}{\sqrt{z^2 + 4|x|/\sqrt{2}}} + 1\right) dz$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-|x|\sqrt{2}) \int_{-\infty}^{+\infty} \exp(-z^2) \left(\frac{z}{\sqrt{z^2 + 4|x|/\sqrt{2}}} + 1\right) dz$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-|x|\sqrt{2}) \left[\int_{-\infty}^{+\infty} \exp(-z^2) dz + \int_{-\infty}^{+\infty} \frac{z \exp(-z^2)}{\sqrt{z^2 + 4|x|/\sqrt{2}}} dz\right]$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} 2 \exp\left(-z^2 - \frac{\int_{-\infty}^{\infty} |z| \sqrt{2}}{|x|\sqrt{2}}\right) \left(\frac{z}{\sqrt{z^2 + 4|x|/\sqrt{2}}} + 1\right) dz$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-|x|\sqrt{2}) \int_{-\infty}^{+\infty} \exp(-z^2) \left(\frac{z}{\sqrt{z^2 + 4|x|/\sqrt{2}}} + 1\right) dz$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-|x|\sqrt{2}) \left[\int_{-\infty}^{+\infty} \exp(-z^2) dz + \int_{-\infty}^{+\infty} \frac{z \exp(-z^2)}{\sqrt{z^2 + 4|x|/\sqrt{2}}} dz\right]$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} 2 \exp\left(-z^2 - \frac{\int_{-\infty}^{\infty} |z| \sqrt{2}}{\sqrt{z^2 + 4|x|/\sqrt{2}}} + 1\right) dz$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-|x|\sqrt{2}) \int_{-\infty}^{+\infty} \exp(-z^2) \left(\frac{z}{\sqrt{z^2 + 4|x|/\sqrt{2}}} + 1\right) dz$$

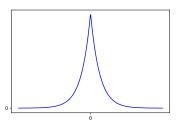
$$= \frac{1}{\sqrt{2\pi}} \exp(-|x|\sqrt{2}) \left[\int_{-\infty}^{+\infty} \exp(-z^2) dz + \int_{-\infty}^{+\infty} \frac{z \exp(-z^2)}{\sqrt{z^2 + 4|x|/\sqrt{2}}} dz\right]$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-|x|\sqrt{2}) \left[\int_{-\infty}^{+\infty} \exp(-z^2) dz + \int_{-\infty}^{+\infty} \frac{z \exp(-z^2)}{\sqrt{z^2 + 4|x|/\sqrt{2}}} dz\right]$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-|x|\sqrt{2}) \left[\int_{-\infty}^{+\infty} \exp(-z^2) dz + \int_{-\infty}^{+\infty} \frac{z \exp(-z^2)}{\sqrt{z^2 + 4|x|/\sqrt{2}}} dz\right]$$

$$f(x) = \frac{1}{\sqrt{2}} \exp(-|x|\sqrt{2})$$

Laplace Distribution with variance 1



#### In practice:

- Histogram of a high pass filtered image might look Laplacian
- ullet In reality it is a Gaussian Mixture with varying  $\sigma_i^2$ 
  - Detection in Laplace noise : Delimiter (non linearity) + Correlator
  - Detection in a Gaussian Mixture (known variances): Generalized Matched Filter
- ullet Very different detectors: If we can reliably estimate  $\sigma_i^2$ , GMF will perform better because it uses prior knowledge about the structure