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Introduction

@ Real life measurements are usually more complex than simple
distributions we studied (Gaussian, Laplace, etc.)

m Can be multimodal
m Can come from multiple sensors with different precisions

@ We will extend to more complex probability distributions: Mixture
models
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Finite and countable mixture models

Let A\i,..., Ay € [0,1], verifying 3. A; = 1. And f;(6;) potentially
different types of probability distributions parametrized by 6;. A
mixture model can be written as:

M
p(x; 01,00, A A) = D Nifi(w;6:)
i=1

Alternatively:

Ze{l,.... M}y ~ P(Z=i)=\

X|Z ~ [fxz(0z2)
M

X o~ > fxz(X|Z = 260.)p(Z =2) =Y Nifi(8)

i=1



P(Z=i)= A

Choose i with probability 4;

X|(Z =1~ f1(0)|| XI(Z =2) ~ f2(62) X|(Z =M)~ fmu(Om)

Sample from X |(Z = i)
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Finite and countable mixture models

o Is f(x;61,...,0n,A1,..., ) a pdf? By definition ...

v
o

M
Fl@;01, .00, M0, A) = > Nifil@; 6;)
i=1

M
| F@on O ade = [ S 6)da
X X



Example: finite Gaussian mixtures

© pi(0:) = N (i, 07):

M
f('r;ela"'vQMa)\b'"?)\M) = Z)‘ZN(xmulvo-zQ)
=1

M 2

1 —(z— i

= Z)‘i exp( (2 2,u) )
i1 y\/27m0? 20;
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Uncountable mixture models

@ We sample from a continuous set of parameters

@ Prior knowledge f()\) of how these parameters have to be sampled
(potentially parameterized)

@ Simplifying assumption: same family of probability distribution
model, parametrized from random samples of f(\):

Z ~  fz(A) prior
X|Z ~ fxz(02)

X o~ [ fap(X1Z = 0. 200
Z



Example: Gaussian mixture with exponentially
distributed variance

@ We sample a variance 02 from an Exponential distribution:

et t>0
f"z{o t<0

0

@ And use this variance in A/(0, 0?)
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Example: Gaussian mixture with exponentially
distributed variance

e 7 =o¢2

@ fz(X): Prior is exponential
@ No A\: Prior is not parametrized

® fxz(02) = N(0,0%): Mixture elements are Gaussian r.v.'s
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Example: Gaussian mixture with exponentially
distributed variance

2rt 2t

W

_1;2
falo? =) = exp( )

+o00o
f@) = [ falo® = 0fpaita
0
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Example: Gaussian mixture with exponentially
distributed variance

1 1 —z?
) = — [ —=exp|———t|dt
() = | = p( = )
0
+o00o
o 1 —a? 2
(substitution) y = vVt : = —/2exp — — dy
o 292
0
9 2
x 2 ||
+92 = L o
wati = (o )
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Example: Gaussian mixture with exponentially
distributed variance

1 1 —a?
= — — — —t|dt
fa@) = o= [ texp( N )
0
1 +oo —x2
(substitution) y = vt : = —/Qexp — —y* | dy
2m J 22

2 2
T €T
+y? = y+u —V2|z|
y y
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Example: Gaussian mixture with exponentially
distributed variance

1 g2
= — — —t]|dt
fa@) = o= [ texp(% )
0
_l’_

N 1 r —x? 9
(substitution) y = vt : = / 2exp | — — dy
0
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Example: Gaussian mixture with exponentially
distributed variance

f(x)

(substituition) y = v/t :

(substitution) z

400
1 /1 —z2 N
L S
Var | Vi P o

+o0
1 —x2
—— [ 2exp | —= — 4% ) d
\/277/ p<2y2 y) Y

y—0 =z = —00
Yy —>+00 =z — 400

2 a?
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Example: Gaussian mixture with exponentially
distributed variance

]

y— —=
V2y
V2y? — |z
V2y

(substitution) z =

z =

oy — a3 = 0
A = 22 4+4z|/V2

zj:\/Z_Zi\/22+4|x\/\/§>O

vy = 2 2

1 2zd
dy = = |dz+ =
2 24/22 + 4|z|/V2
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Example: Gaussian mixture with exponentially

distributed variance

too out of integral
1 9 ’ > z (
on /Zexp 22— |z|V2 —_— 1 -
) NERRTEIN;

+oo
! exp(—|z|v/2) / exp(—2%) (Z + 1) dz

V2 NENUTHING,

! exp(—|z|v2) [/exp dz+/ _zexp(z2)

var V2 +4\x|/f

— 00
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Example: Gaussian mixture with exponentially
distributed variance

. Too out of integral
2) = — [ Zexp| —22—  |z[V2 1)
f(x) m[o b o ( Ery A )
1 s
= exp(—|z|[v2 exp(—2z2 S 1]dz
= exp(—lal >_ZO bl >( Z2+4‘x|/ﬁ+)

1
= exp(—|z|v/2) /exp dz+/ _zep(=)

vV Ve +4\x|/f
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Example: Gaussian mixture with exponentially

distributed variance

out of integral

+oo
1 2 (
—— [ Fexp | =22 — V2 — 1]
@Z@ i I (\/z2+4\x1/¢§ )
+oo

—exp(—[av2) [ exp(-2?

—_— 1]
var =S | (\/z2+4\x|/ﬁ )

1

Var

exp(—|z|v/2) /exp dz+/ _zep(=)

VARG +4\x|/f
>

=7 odd function of z
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Example: Gaussian mixture with exponentially
distributed variance

1
flz) = 7 exp(—|z|v2)

Laplace Distribution with variance 1
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Example: Gaussian mixture with exponentially
distributed variance

In practice:
@ Histogram of a high pass filtered image might look Laplacian
@ In reality it is a Gaussian Mixture with varying o2

m Detection in Laplace noise : Delimiter (non linearity) + Correlator
B Detection in a Gaussian Mixture (known variances): Generalized
Matched Filter

@ Very different detectors: If we can reliably estimate o, GMF will
perform better because it uses prior knowledge about the structure
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