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Introduction

We now extend to the M -ary case: signals s(0)
j , s

(1)
j , . . . , s

(M−1)
j :

H0 : xj = s
(0)
j + ξj

H1 : xj = s
(1)
j + ξj

. . .

HM−1 : xj = s
(M−1)
j + ξj
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M-ary deterministic signals in WGN

ξj ∼ N (0, σ2), all errors have the same cost, no gains, and equal
priors ⇒ ML detector (correlator with energy term bias or minimum
distance):

k = argmaxi Ti(x) = argmaxi

n∑
j=1

xjs
(i)
j −

E(i)

2 , or

k = argmini Di(x)2 = argmini

n∑
j=1

(xj − s(i)
j )2
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M-ary deterministic signals in WGN
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M-ary deterministic signals in WGN

k = argmaxiTi(x) = argmaxi
n∑
j=1

xjs
(i)
j −

E(i)

2

Determining Pe is more difficult in the general case

When k is the correct signal, error occurs if one of the other Ti’s is
larger than Tk. Alternatively, if the maximum of the other Ti’s is
larger than Tk.

Finding the pdf of the maximum of a number of r.v.’s is a problem
in order statistics. For dependent r.v.’s this is intractable.

We consider the special case where the signals are orthogonal
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Orthogonal M-ary deterministic signals in
WGN

Cov[Ti, Tk|Hl] = E[(Ti − E(Ti))× (Tk − E(Tk))]
↗ all expectations under Hl

Ti − E(Ti)
under Hl

=
n∑
j=1

xjs
(i)
j −

E(i)

2 − E

 n∑
j=1

xjs
(i)
j −

E(i)

2


=

n∑
j=1

(s(l)
j + ξj)s(i)

j
�
�
�

−E
(i)

2 − E

 n∑
j=1

(s(l)
j + ξj)s(i)

j



�
�
�

+E
(i)

2
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Orthogonal M-ary deterministic signals in
WGN

Ti − E(Ti)
under Hl

=
�
�
�
�
�n∑

j=1
s

(l)
j s

(i)
j +

n∑
j=1

ξjs
(i)
j −

�
�
�
�
�n∑

j=1
s

(l)
j s

(i)
j

+
n∑
j=1

s
(i)
j �
��*

= 0
E[ξj ]

=
n∑
j=1

ξjs
(i)
j

Cov[Ti, Tk|Hl] = E

 n∑
j=1

ξjs
(i)
j

n∑
m=1

ξms
(k)
m


=

n∑
j,m=1

s
(i)
j s

(k)
m E[ξmξj ]
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Orthogonal M-ary deterministic signals in
WGN

Cov[Ti, Tk|Hl] =
n∑

j,m=1
s

(i)
j s

(k)
m E[ξmξj ]︸ ︷︷ ︸

0 if j 6=m,σ2 if j=m

= σ2
n∑
j=1

s
(i)
j s

(k)
j = σ2s(i)T s(k)

(OG signals): Cov[Ti, Tk|Hl] =
{

0 i 6= k

σ2E(i) i = k
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Orthogonal M-ary deterministic signals in
WGN

(OG signals): Cov[Ti, Tk|Hl] =
{

0 i 6= k

σ2E(i) i = k

⇒ Ti, Tk are uncorrelated under any Hl

Also, under any Hl, (T0, . . . , TM−1) is jointly Gaussian.
(Ti =

∑n
j=1 xjs

(i)
j − E

(i)

2 is a linear combination of iid Gaussians)

⇒ Ti, Tk are independent under any Hl
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Orthogonal M-ary deterministic signals in
WGN

Assuming equal signal energies E(i) = E for all i:

Pe =
M−1∑
i=0

Pr{Ti < max(T0, . . . , Ti−1, Ti+1, . . . , TM−1)|Hi}︸ ︷︷ ︸
By symmetry, all equal

=1/M︷ ︸︸ ︷
P (Hi)

= Pr{T0 < max(T1, . . . , TM−1)|H0}
= 1− Pr{T0 > max(T1, . . . , TM−1)|H0}
= 1− Pr{T0 > T1, T0 > T2, . . . , T0 > TM−1|H0}

= 1−
+∞∫
−∞

Pr{t > T1, t > T2, . . . , t > TM−1|H0}pT0(t)dt

= 1−
+∞∫
−∞

M−1∏
i=1

Pr{t > Ti|H0}pT0(t)dt

Last step follows from the conditional independence of Ti’s 10 / 22
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Orthogonal M-ary deterministic signals in
WGN

Pe = 1−
+∞∫
−∞

M−1∏
i=1

Pr{t > Ti|H0}pT0(t)dt

Ti(x|Hl) =
n∑
j=1

xjs
(i)
j −

E
2 =

n∑
j=1

(s(l)
j + ξj)s(i)

j −
E
2

Ti(x|Hl) ∼
{
N (−E/2, σ2E) i 6= l

N (E/2, σ2E) i = l
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Orthogonal M-ary deterministic signals in
WGN

Pe = 1−
+∞∫
−∞

M−1∏
i=1

Pr{t > Ti|H0}pT0(t)dt

Let Φ(x) = 1−Q(x) be the cdf of N (0, 1), then

Pr{t > Ti|H0} = 1−Q
(
t+E/2√
σ2E

)
= Φ

(
t+ E/2√
σ2E

)

1− Pe =
+∞∫
−∞

Φ
(
t+ E/2√
σ2E

)M−1 1√
2πσ2E

exp
(
−(t− E/2)2

2σ2E

)
dt
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Orthogonal M-ary deterministic signals in
WGN

Substitution u = t+E/2√
σ2E

:

1− Pe =
+∞∫
−∞

Φ(u)M−1 1√
2π

exp

−1
2

u−
√
E
σ2

2
du

E
σ2 = ENR Energy/Noise ratio
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Orthogonal M-ary deterministic signals in
WGN

Pe = 1−
+∞∫
−∞

Φ(u)M−1 1√
2π

exp

−1
2

u−
√
E
σ2

2
du

0 √/σ2

exp(−1/2(u−√/σ2 )2)
ΦM−1(u)
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Orthogonal M-ary deterministic signals in
WGN

Pe = 1−
+∞∫
−∞

Φ(u)M−1 1√
2π

exp

−1
2

u−
√
E
σ2

2
du

For large enough ENR

Pe ' 1− Φ

√ E
σ2

M−1

= 1−

1−Q

√ E
σ2

M−1
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Application for multiple-bit watermarking

Goal: Given image with n pixels xj , j = 1, . . . , n, embed the
payload of k (random) bits to be robust to attack channel in the
form of AWGN with variance σ2

Requirements:
Fixed watermark energy per pixel ew for invisibility

Pc probability of extracting all k bits correctly as large as possible

Pe = 1− Pc probability of extracting incorrect message
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Three possibilities

Multiple hypotheses: Embed one out of 2k possible mutually OG
watermark signals s(i)

j , i = 1, . . . , 2k

multiple hypotheses detection problem

Time sharing: Divide image into k disjoint segments (tiles), each
with n/k pixels, and embed one-bit of the watermark payload in
each segment

not robust to cropping
not using content-adaptivity

Multiplexing: Embed each watermark signal into the entire image
by adding / subtracting k different watermark signals s(i)

j ,
j = 1, . . . , n, i = 1, . . . , k

watermarks interfere because they “overlap”
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Multiple hypotheses

Payload assumed to be k random bits =⇒ all 2k hypotheses
equally probable (equal priors), costs equal as well.

If all watermark signals have the same energy E = new, the
probability of selecting the wrong hypothesis (not extracting all k
bits correctly) is

P (multi)
e = 1−

(
1−Q

(√
E/σ2

))2k−1

where Φ(x) = 1−Q(x) is the c.d.f. of a standard normal random
variable N (0, 1) and Q(x) is its tail probability
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Time-sharing

Watermark energy in each segment E/k

Each bit embedded by adding / subtracting a deterministic signal
sj , j = 1, . . . , n/k (we know this is optimal)

Probability of extracting the wrong watermark bit (from one fixed
segment) is pe = Q

(√
E/kσ2

)
Probability that at least one bit will be extracted incorrectly out of
k tiles is thus

P (ts)
e = 1− (1− pe)k = 1−

(
1−Q

(√
E/kσ2

))k

Note that the argument of the Q-function under the square root is
now k-times smaller but, on the other hand, the exponent is k
instead of 2k − 1
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Multiplexing
k watermarks “placed on top of each other”

s
(i)
j ∼ N (0, ew/k), variance of each watermark signal per pixel
ew/k to have ew per pixel

Probability of extracting a given watermark bit incorrectly is

pe = Q

(√
new/k

σ2 + (k − 1)ew/k

)

because the other k − 1 watermark signals contribute to attack
channel

Can be alleviated by selecting s(i)
j mutually OG, s(m) · s(l) = 0,

m 6= l

Multiplexing can achieve the same pe = Q
(√
E/kσ2

)
as time

sharing
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Multiplexing > Time Sharing

Robust to cropping

Able to leverage content adaptivity: ew can be adjusted based on
content complexity for better trade off between watermark visibility
and robustness

Time sharing less robust (or more visible) in smooth regions
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Multiplexing vs. multiple HT

Multiple hypotheses approach does not scale well with the payload
size k

Requires exponentially many watermarks to be tested for

In contrast to time sharing and multiplexing, the method does not
allow usage of error-correction codes

This makes multiplexing the most suitable for practical applications
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