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@ We now extend to the M-ary case: signals s
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M-ary deterministic signals in WGN

@ & ~ N(0,0?%), all errors have the same cost, no gains, and equal
priors = ML detector (correlator with energy term bias or minimum
distance):

k = argmax; Tj(x) = argmaxiZ:pjsg.) - or

k = argmin; D;(x)? = argmin, Z (z)



M-ary deterministic signals

in WGN

Voronoi diagram




M-ary deterministic signals in WGN

n N AO)
k= T; = , ORI
argmax;T;(x) = argmax; ]Z_:l T;s; 5

@ Determining P, is more difficult in the general case

@ When k is the correct signal, error occurs if one of the other T;'s is
larger than T}. Alternatively, if the maximum of the other T;'s is
larger than Tj.

@ Finding the pdf of the maximum of a number of r.v's is a problem
in order statistics. For dependent r.v.'s this is intractable.

@ We consider the special case where the signals are orthogonal



Orthogonal M-ary deterministic signals in
WGN

Cou[T;, Ty |Hi) = E[(T; — E(Ty)) x (Tiy — E(Tk))]
A all expectations under H;
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Orthogonal M-ary deterministic signals in
WGN
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Orthogonal M-ary deterministic signals in

WGN
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Orthogonal M-ary deterministic signals in

WGN
. 0 i#£k
(OG signals): Cov[T;, T|H;)) = {025@) i
@ = T;, Ty} are uncorrelated under any H;
@ Also, under any Hj, (T0v7--~7TM71) is jointly Gaussian.

o n () @ . . . . . .
(T; = > -1 xjs;” — =5~ is a linear combination of iid Gaussians)

@ = T;, T} are independent under any H;
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Orthogonal M-ary deterministic signals in
WGN

Assuming equal signal energies £ = & for all i:

M-1 —yM
P. = Y PH{T; <max(Ty,...,Ti—1,Tit1, ..., Tr—1)| Hi } P(H;)
=0

By symmetry, all equal
= Pr{To < max(Ty,...,Ty—1)|Ho}
= 1—Pr{To > max(T1,...,Thv-1)|Ho}
= 1- PF{T() > Ty, Ty >Ts,...,Th > TM_1’H0}
+oo
— 1- / Pr{t > Tyt > To,....t > Tar_i|Holpr, ()dt
—00
ToM-1
= 1- / 1 Pr{t > Ti|Ho}pr, (t)dt
=1

—00
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Orthogonal M-ary deterministic signals in
WGN

+oopr—1

pP. = 1—/ I1 Pr{t > T:|Ho}pr, (t)dt

o i=1

Z l)+fﬂ

N(=E/2,0%8) i#1
N(E/2,0%8)  i=1

11 /22



Orthogonal M-ary deterministic signals in
WGN

+oonr—1
P = 1_/ [T Prit > Ti|Ho}pr, (t)dt

e i=1

Let ®(x) =1 — Q(x) be the cdf of A/(0,1), then

t—|—8/2>

Prit>T|Ho} =1-Q(2E2) = <1>< o

1-P,. = +/Oo‘1> (t + 8/2>M_1 L exp <—(t_€/2)2> dt
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12 / 22



Orthogonal M-ary deterministic signals in
WGN

t+E/2.
Vo2&’

Substitution u =

b 1 1 e\
1-P. = /Cb(u)M_lmexp —3 (u— 02) du

—00

% = ENR Energy/Noise ratio
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Orthogonal M-ary deterministic signals in
WGN

— exp(—1/2(u -V &/0?)?)

— oM-1(y)
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Orthogonal M-ary deterministic signals in
WGN

+o0 2
_ 1 mo1 1L L N
P =1 /CID(U) mexp 5 | v = du

For large enough ENR
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Application for multiple-bit watermarking

Goal: Given image with n pixels z;, j = 1,...,n, embed the
payload of k (random) bits to be robust to attack channel in the
form of AWGN with variance o2

Requirements:
@ Fixed watermark energy per pixel e,, for invisibility
@ P, probability of extracting all k bits correctly as large as possible

@ P, =1 — P, probability of extracting incorrect message
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Three possibilities

@ Multiple hypotheses: Embed one out of 2¥ possible mutually OG
watermark signals sy’), i=1,...,2k
m multiple hypotheses detection problem
@ Time sharing: Divide image into k disjoint segments (tiles), each
with n/k pixels, and embed one-bit of the watermark payload in
each segment
® not robust to cropping
B not using content-adaptivity

© Multiplexing: Embed each watermark signal into the entire image
by adding / subtracting k different watermark signals ng)v
j=1....n,i=1,...,k

m watermarks interfere because they “overlap”
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Multiple hypotheses

@ Payload assumed to be k random bits = all 2* hypotheses
equally probable (equal priors), costs equal as well.

@ If all watermark signals have the same energy £ = ne,,, the
probability of selecting the wrong hypothesis (not extracting all &
bits correctly) is

P~ 1 (1 (V7))

where ®(z) = 1 — Q(z) is the c.d.f. of a standard normal random
variable A/(0,1) and Q(z) is its tail probability
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Time-sharing

@ Watermark energy in each segment £/k

@ Each bit embedded by adding / subtracting a deterministic signal
sj, j=1,...,n/k (we know this is optimal)

@ Probability of extracting the wrong watermark bit (from one fixed
segment) is p. = Q (\/5//60’2)

@ Probability that at least one bit will be extracted incorrectly out of
k tiles is thus

k
PO =1 - (1-p)=1- (1 ~Q (\/5//{/’0‘2))
Note that the argument of the ()-function under the square root is

now k-times smaller but, on the other hand, the exponent is k&
instead of 2F — 1
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Multiplexing

k watermarks “placed on top of each other”

sg-i) ~ N(0,e,/k), variance of each watermark signal per pixel
ew/k to have e, per pixel

Probability of extracting a given watermark bit incorrectly is

B neqy/k
pe =@ (\/a2 . 1)ew/k>

because the other k£ — 1 watermark signals contribute to attack
channel

Can be alleviated by selecting s;i) mutually OG, s(™) .s() =0,

m#

Multiplexing can achieve the same p, = Q (\/S/kaz) as time
sharing
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Multiplexing > Time Sharing

@ Robust to cropping

@ Able to leverage content adaptivity: e,, can be adjusted based on
content complexity for better trade off between watermark visibility

and robustness

@ Time sharing less robust (or more visible) in smooth regions
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Multiplexing vs. multiple HT

@ Multiple hypotheses approach does not scale well with the payload
size k

B Requires exponentially many watermarks to be tested for

@ In contrast to time sharing and multiplexing, the method does not
allow usage of error-correction codes

@ This makes multiplexing the most suitable for practical applications

22



