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Introduction

We extend to M : H0, H1, . . . ,HM−1 hypotheses with known priors
P (Hi) and densities p(x|Hi)

Pattern recognition or classification with multiple classes

Cij cost of deciding Hi when Hj is true

Expected Bayes Risk:

C =
M−1∑
i=0

M−1∑
j=0

CijP (Hi|Hj)P (Hj)

Find the partition of the space into R0, . . . , RM−1 so that C is
minimal
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Bayes risk minimization for multiple HT

�0

�1

�2

. . .

��−1

R0 ∪R1 ∪ . . . ∪RM−1 = RN

If x ∈ Ri ⇒ decide Hi
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Bayes risk minimization for multiple HT

C =
M−1∑
i=0

M−1∑
j=0

CijP (Hi|Hj)P (Hj)

=
M−1∑
i=0

M−1∑
j=0

Cij

∫
Ri

p(x|Hj)dxP (Hj)

=
M−1∑
i=0

M−1∑
j=0

Cij

∫
Ri

p(x|Hj)P (Hj)dx

(Bayes rule) =
M−1∑
i=0

M−1∑
j=0

Cij

∫
Ri

p(Hj |x)p(x)dx

(BTW) p(x) =
M−1∑
j=0

p(x|Hj)P (Hj)
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Bayes risk minimization for multiple HT

C =
M−1∑
i=0

∫
Ri

M−1∑
j=0

Cijp(Hj |x)p(x)dx

=
M−1∑
i=0

∫
Ri

Ci(x)p(x)dx

Note:
∑M−1
j=0 p(Hj |x) = 1 =⇒

Ci(x) =
∑M−1
j=0 Cijp(Hj |x) is the expected average cost of

deciding Hi given x

⇒ Assign x to Rk where k = argminiCi(x)
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Bayes risk minimization for multiple HT, equal
costs, zero gains

Equal costs (without loss of generality): Cij = 1 for i 6= j, zero
gains Cij = 0 for i = j

We select

k = argminiCi(x) = argmini
M−1∑
j=0

Cijp(Hj |x)

(equal costs, zero gains) = argmini
M−1∑
j=0,j 6=i

p(Hj |x)

k = argmini
M−1∑
j=0

p(Hj |x)− p(Hi|x)
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Bayes risk minimization for multiple HT, equal
costs, zero gains

k = argmini{1− p(Hi|x)} = argmaxi p(Hi|x)

⇒ MAP minimizes the total error Pe:

Pe =
∑
i 6=j

P (Hi|Hj)P (Hj)
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Bayes risk minimization for multiple HT, equal
costs, zero gains, equal priors

If priors are equal: P (Hi) = 1/M for all i. Then MAP turns to ML:

k = argmaxip(Hi|x)

(Bayes rule) = argmaxi
p(x|Hi)× 1/M

p(x)
k = argmaxip(x|Hi), ML detector
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Example: Multiple DC levels in WGN

H0 : xj = −A+ ξj

H1 : xj = ξj

H2 : xj = A+ ξj

A > 0, ξj ∼ N (0, σ2) iid, Ai = −A, 0, A

Assume: equal priors: P (Hi) = 1/3, no gains, equal costs. ML
minimizes Pe

p(x|Hi) =
n∏
j=1

1√
2πσ2

exp
(
− (xj −Ai)2

2σ2

)
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Example: Detection of DC level in WGN

ML detector: k = argmaxip(x|Hi)
= argmini − log p(x|Hi)

= argmini
n∑
j=1

(xj −Ai)2

k = argminiD2
i
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Example: Detection of DC level in WGN

D2
i =

n∑
j=1

(xj −Ai)2 =
n∑
j=1

(xj − x + x−Ai)2

D2
i =

n∑
j=1

(xj − x)2 + 2(x−Ai)
��

��
��*

= 0n∑
j=1

(xj − x)

+n(x−Ai)2,

D2
i =

n∑
j=1

(xj − x)2 + n(x−Ai)2

∑n
j=1(xj − x)2 doesn’t depend on i ⇒ chose k = argmini(x−Ai)2

Minimum Pe detector is the minimum Euclidean-distance detector
between x and Ai = −A, 0, A
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Example: Detection of DC level in WGN

x ∼


N (−A, σ2/n) under H0

N (0, σ2/n) under H1

N (A, σ2/n) under H2

-A -A/2 0 A/2 A

p(x|H1)

p(x|H2)

p(x|H0)
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Example: Detection of DC level in WGN
To evaluate Pe, we will compute Pc the probability of making a
correct decision Pe = 1− Pc

Pc =
2∑
i=0

P (Hi|Hi)P (Hi)

= 1
3

2∑
i=0

P (Hi|Hi)

= 1
3[Pr{x < −A/2|H0}+ Pr{−A/2 < x < A/2|H1}

+Pr{x > A/2|H2}]

= 1
3

[
1−Q

(
−A/2 +A√

σ2/n

)
+Q

(
−A/2− 0√

σ2/n

)
−Q

(
A/2− 0√
σ2/n

)

+Q
(
A/2−A√
σ2/n

)]
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Example: Detection of DC level in WGN

-3A/2 -A -A/2 0 A/2 A 3A/2

p(x|H1)
p(x|H2)
p(x|H0)
T

Pc = 1
3(1− T + 1− 2T + 1− T ) = 1− 4

3T

Pe = 1− Pc = 4
3T = 4

3Q

(√
A2n
4σ2

)
T = Q

(√
A2n
4σ2

)
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Example: Detection of DC level in WGN

Note: For binary HT: Pe = Q

(√
A2n
4σ2

)
, for ternary HT:

Pe = 4
3Q

(√
A2n
4σ2

)
Increased probability of error because we need to distinguish
between more hypotheses

M -ary case (Exercise 3.20): Pe = 2M−2
M Q

(√
A2n
4σ2

)
probability of error doubles for M → ∞
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