
Successive Information Bottleneck and Applications
in Deep Learning

Yassine Yousfi
Electrical and Computer Engineering

Binghamton University-SUNY
yyousfi1@binghamton.edu

Emrah Akyol
Electrical and Computer Engineering

Binghamton University-SUNY
eakyol@binghamton.edu

Abstract—Information Bottleneck (IB) method studies the
trade-off between compression and prediction: extracting rele-
vant information from the input variable X while preserving
relevant information about another random variable Y , the
resulting representation is another random variable Z. Motivated
by the deep neural networks implementations, this paper studies
a novel variation of the N -layer IB problem where the layers
are assumed to be encoded in a successive fashion. We propose
a method for performing an N-Layer IB in a greedy fashion
and analyze numerical results obtained over a set of synthetic
experiments.

Index Terms—Information Bottleneck, Deep Learning

I. INTRODUCTION

Extracting relevant information from high-dimensional data
is the core problem of the broad Machine Learning discipline.
In supervised learning settings, this task is performed via
pre-specified labels given to training data. Deep Learning
methods trained via such labeled data outperform most of
its competitors. However, a comprehensive understanding of
theoretical underpinnings of Deep Learning has remained
an elusive goal. Beyond an isolated theoretical interest, this
understanding would provide significant practical benefits in-
cluding determination of optimized design parameters without
tuning. One heuristic towards achieving this goal is to utilize
lossy compression ideas with the premise that minimal suffi-
cient statistics in information theory can successfully model
the relevant information extraction process of Deep Neural
Networks (DNNs). This exactly corresponds to the problem of
the Information Bottleneck (IB) method, originally proposed
in [1]: compressing one random variable (features) to generate
a compressed version (features, i.e., low dimensional represen-
tation) while preserving as much information on another other
variable (labels).

One of the existing open problems of Deep Learning is the
determination of the many hyper-parameters involved, in other
words, the architecture design task. Particularly, it is not clear
apriori, how many layers should an optimized DNN use or how
many neurons should exist in each layer. Our primary goal in
this paper is to investigate the optimal trade-off between the
depth (number of layers) and the width (number of neurons) in
the presence of a complexity constraint that is measured via the
number of synapses, i.e., the number of connections between

This work is supported by NSF CCF grant # 1910715.

neurons in fully connected DNNs. Towards this goal, we
model the DNN architecture as a successive IB problem and
numerically analyze the performance of successive IB schemes
that have the same complexity but comprised of different
number of layers and neurons. We are particularly interested in
obtaining insights into the following question: how different
layer-neuron configurations at the same complexity perform
through the lens of the Information Bottleneck theory?

The problem of shallow/wide vs deep/thin DNNs has been
open for many years in the Deep Learning literature [2]–[4]
with first insights pointing at the advantages of deep archi-
tectures in terms of expressivity and efficiency to represent
common functions. However, recent work [5]–[7] show that in
practice, the width vs depth is usually a trade-off that needs
to be cautiously tuned in order to avoid over-fitting.

On the other hand, the IB theory has recently received
a revived interest due to its modeling ability of the Deep
Neural Networks (DNNs). A few notable examples include,
[8]–[10], where researchers explore the following question:
can the apparent superior performance of DNNs trained via
stochastic gradient descent algorithms be attributed to the fact
that they form an optimal IB compressed representation of the
data? Towards confirming the validity of IB in DNN models,
in [11], authors obtained competitive results via a DNN
optimizing the IB loss. Beyond modeling the inner machinery
of DNN, IB has been used to improve output calibration
and detection of out-of-distribution data [12], robustness to
adversarial examples [13], and to optimally prune layers of
DNNs that are generated via classical (cross-entropy loss, etc.)
training methods [14]. In another relevant recent work [15], β-
VAE, a variational auto-encoder is learned via an IB inspired
objective. In [16], authors argue that IB-based optimization
metrics forces the DNN in β-VAE to learn a disentangled
latent representation.

This paper is organized as follows. In next section, we
present preliminaries, notations, and prior art. In Section III,
we describe the problem formulation and the proposed algo-
rithm. Section IV shows numerical results and discussions. We
present our conclusions and discuss future research directions
in Section V.

II. PRELIMINARIES

A. Notation

We denote the random variables as capital letters e.g.,
X,Y, Z,, and alphabets in calligraphic notations X ,Y,Z . For
simplicity, we take the random variables as discrete valued in
finite alphabets. For conciseness of notation, we use p(x) to
denote p(X = x).

B. Prior art

1) Point-to-Point IB: In the original IB formulation, the
quantized variable Z is found by minimizing the IB functional:

min
p(z|x)

I(X;Z)− βI(Y ;Z) (1)

Where β > 0 is a Lagrange multiplier which controls the
trade-off between preserving information about Y and com-
pressing X . Varying β produces the IB plane. We note that
Y → X → Z forms a Markov chain in this order, and it is
captured in the problem formulation above (the optimization
variable is p(z|x) as opposed to p(z|x, y)). Algorithms to solve
the IB problem for a given input source p(x, y) are described
in [17]. We focus on the iterative IB algorithm which updates
using the 3 self constrained equations:

p(z|x) = p(z)
N(x,β) exp{β

∑
y p(y|x) log

p(y|z)
p(y|x)},

p(z) =
∑
x p(z|x)p(x),

p(y|z) =
∑
x p(y|x)p(x|z).

(2)

where N(x, β) serves here as a normalization term.
2) N-Layer Information Bottleneck: Here, we summarize

one particular generalization of the point-to-point IB method
above to N layers to adopt to the DNN architecture. For a N-
Layer representation of the data (Z1, ..., ZN), a natural gener-
alization of the IB problem follows from N-layer extension
of the scalable compression analyzed in the rate-distortion
literature [18], [19] with a well-defined distortion function:

di(X,Zi) = DKL(p(y|x)||p(y|zi)). (3)

Hence, the N-layer scalable R-D problem formulation mini-
mizes the following Lagrangian functional:

N∑
i=1

I(X;Z1, ..., Zi)− βiI(Y ;Zi) (4)

This formulation however is not sufficient to capture the
Markov chain condition Y → X → Z1 → ... → ZN which
is a fundamental characteristics of a DNN structure, i.e. each
”layer” Zi’should only depend on Zi−1 statistically. By simply
plugging this Markov chain condition the first term of the
optimization problem yields:

I(X;Z1, ..., ZN) = I(X;Z1) (5)

0.0 0.5 1.0 1.5 2.0

I(X;Z)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

I
(Y

;Z
)

Fig. 1. An illustration of the IB plane for a given input p(x, y) and a constraint
on the quantized variable size |Z|

III. PROPOSED SUCCESSIVE IB METHOD

Here, as opposed to the prior work in generalizing IB to N
layers, we formulate the minimization problem as follows:

min
p(z1,...,zN |x)

N∑
j=1

I(Zj−1;Zj)− βjI(Y ;Zj) (6)

Where Z0 = X , under Markov chain constraint Y → X →
Z1 → ... → ZN . Our primary motivation is the fact that this
formulation models, much more accurately than the previous
extensions in [20], [21], the mechanics of a feed forward DNN
where each layer is a sequential transformation of the previous
layer as shown in Figure 2. We also note that this formulation
admits the Markov chain condition, which is not possible for
the direct adoption of the results in N-Layer scalable source
compression as discussed in Section II-B2. While we omit the
exact solution of this problem here, to demonstrate the validity
of the basic ideas in a practical DNN implementation, we
focus on a simple greedy optimization procedure inspired by
greedy layer-wise training in Deep Learning [22] where each
layer of a fully connected DNN is trained in an unsupervised
manner, the training is done independently layer-by-layer
which produces a greedy algorithm.

We essentially solve N independent point-to-point IB prob-
lems. We note that the successive greedy optimization Al-
gorithm 1 also translates to Deep Neural Networks with
intermediate losses [23] where intermediate supervised losses
are added to a DNN architecture to help convergence or
produce a better internal representation and an improved
supervised performance. In our case, each layer is connected
to an intermediate ”supervised loss” through −βjI(Y ;Zj).
Each layer Zj , j ≤ N solves IB algorithm described in
Section II-B1:

min
p(zj |zj−1)

I(Zj−1;Zj)− βjI(Y ;Zj) (7)

Algorithm 1 Greedy successive N-Layer IB
Inputs p(x, y), βj, |Zj |, N
Outputs p(x, z1, ..., zN , y)
Z0 = X
for j in 1, ..., N
p(x, zj , y)=IB(p(zj−1, y), βj , |Zj |)

Fig. 2. Structure of a Neural Network, the N layers Z1...ZN for a successive
Markov chain

The algorithm uses the self consistent equations similar to
Equations 2 at each layer. βj controls the trade-off trade-
off between preserving information about Y and compressing
Zj−1 at layer Zj , Section IV discusses the choices of βj and
their implications on the IB plane.

Algorithm 1 describes the greedy successive N-Layer IB
optimization. It is a greedy solution such that each layer Zj
optimizes best for Zj−1 and Y independently of Zj+1...ZN .

IV. NUMERICAL RESULTS

In this section, we present our numerical results. We focus
on the case with two layers, denoted here as Z1 and Z2,
due to space constraints, while noting that the results and
the approach can easily be extended to more general, i.e.,
N > 2 layer case. We generate a joint distribution p(x, y),
with |X | = 64, |Y| = 2. We compare the results of the greedy
successive 2-Layer IB to the vanilla 1-Layer IB.

Analogous to the IB plane, the 2-Layer IB plane represents
I(Y ;Z2) as a function of I(X;Z2). It corresponds to the
IB plane when only considering the last compressed layer
Z2, which is usually viewed as a ”feature vector” in DNNs.
Figures 3, 4 and 5 show the concave hull of the points
I(Y ;Z2), I(X;Z2) generated by the greedy successive IB
algorithm for different β1, β2.

Note that at any point of the N-Layer IB plane, we have
the following inequalities simply due to the data processing
inequality (DPI): {

I(Y ;Z2) ≤ I(Y ;Z1),

I(X;Z2) ≤ I(X;Z1)
(8)

0.0 0.5 1.0 1.5 2.0

I(X;ZN)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

I
(Y

;Z
N

)

1 Layer IB |Z| = 25

2 Layer IB |Z1| = |Z2| = 5

I(Y ;Z1)

I(X;Z1)

Fig. 3. 2-Layer IB plane for a fixed β1

Assuming β1 fixed and varying β2 to draw the 2-Layer IB
plane, Equation 8 implies that the curve will be vertically
bounded by I(Y ;Z1) and horizontally bounded by I(X;Z1)
as shown in Figure 3.

A. Comparison of 2-Layer IB with 1-Layer IB

We next assume that β1 = β2 = β. We compare the
performance of the greedy successive 2-Layer IB Y → X →
Z1 → Z2 with the vanilla 1-Layer IB Y → X → Z.
Additionally, we impose a ”complexity” constraint on the
hidden layers, meaning that |Z1| · |Z2| = |Z|. The complexity
constraint encapsulates a constraint on the number of connec-
tions in the DNN’s hidden layers (omitting the input layer
connections), which is a standard complexity constraint in the
deep learning literature as each connection corresponds to a
learnable parameter.

Figure 4 shows that the 2-Layer IB is able to achieve higher
relevance for stronger compression regimes compared to the
1-Layer IB, which can be explained by the fact that having 2
layers enables more compression of X with less compromise
on the relevance with Y .

The trend reverses at low compression regimes, where the
relevance is lower than the 1-Layer IB, which is due to
Equation 8, and to the fact that |Z1| < |Z|, i.e. at β →∞ the
2-Layer IB curve is bounded by a sub-optimal curve to the
1-Layer IB curve.

For the sake of experiment, we also compare 2-Layer
IB and 1-Layer IB without the complexity constraint, i.e.
|Z1| = |Z2| = |Z| representing a 2-Layer IB with each layer
having the same size of the one used in the 1-Layer IB. Not
surprisingly, Figure 5 shows that the 2-layer IB has a higher
curve in the IB plane.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an extension of the original IB
problem to a successive N-Layer IB problem. This formulation

0.0 0.5 1.0 1.5 2.0 2.5

I(X;ZN)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

I
(Y

;Z
N

)

1 Layer IB |Z| = 25

2 Layer IB |Z1| = |Z2| = 5

Fig. 4. 2-Layer IB plane for β1 = β2 = β compared to 1-Layer IB plane
with same complexity |Z1| · |Z2| = |Z|

0.0 0.5 1.0 1.5 2.0 2.5

I(X;ZN)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

I
(Y

;Z
N

)

1 Layer IB |Z| = 25

2 Layer IB |Z1| = |Z2| = 25

Fig. 5. 2-Layer IB plane for β1 = β2 = β compared to 1-Layer IB plane
with same layer sizes |Z1| = |Z2| = |Z|

is motivated by the mechanics of a feed forward DNN, where
layers are computed sequentially from the input to the output.
Using a simple greedy optimization algorithm to approximate
the successive N-Layer IB solution, we study the depth/width
trade-off under a complexity constraint of a DNN through the
IB theory lens. Numerical experiments for N = 2 show the
presence of 2 regimes, 2-Layer IB outperforms 1-Layer IB in
high compression regimes while the trend reverses for high
compression regimes.

Our future research will focus on an exact solution of the
successive N-Layer IB problem, as well as interpretations of
the 2 observed regimes through an information-theoretic lens
and applications in DNNs.

REFERENCES

[1] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” arXiv preprint physics/0004057, 2000.

[2] Y. Bengio, Y. LeCun et al., “Scaling learning algorithms towards ai,”
Large-scale kernel machines, vol. 34, no. 5, pp. 1–41, 2007.

[3] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of
linear regions of deep neural networks,” in Advances in Neural Infor-
mation Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2014, pp. 2924–2932.

[4] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
“An empirical evaluation of deep architectures on problems with many
factors of variation,” in Proceedings of the 24th international conference
on Machine learning, 2007, pp. 473–480.

[5] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[7] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolu-
tional neural networks,” ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. Long Beach,
California, USA: PMLR, 09–15 Jun 2019, pp. 6105–6114.

[8] N. Tishby and N. Zaslavsky, “Deep learning and the information bot-
tleneck principle,” in 2015 IEEE Information Theory Workshop (ITW).
IEEE, 2015, pp. 1–5.

[9] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” arXiv preprint arXiv:1703.00810, 2017.

[10] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D.
Tracey, and D. D. Cox, “On the information bottleneck theory of deep
learning,” Journal of Statistical Mechanics: Theory and Experiment, vol.
2019, no. 12, p. 124020, 2019.

[11] A. Elad, D. Haviv, Y. Blau, and T. Michaeli, “Direct validation of
the information bottleneck principle for deep nets,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops, 2019.

[12] A. A. Alemi, I. Fischer, and J. V. Dillon, “Uncertainty in the variational
information bottleneck,” arXiv preprint arXiv:1807.00906, 2018.

[13] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational
information bottleneck,” arXiv preprint arXiv:1612.00410, 2016.

[14] B. Dai, C. Zhu, B. Guo, and D. Wipf, “Compressing neural networks us-
ing the variational information bottleneck,” in International Conference
on Machine Learning. PMLR, 2018, pp. 1135–1144.

[15] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts
with a constrained variational framework,” 2016.

[16] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,
and A. Lerchner, “Understanding disentangling in β-vae,” arXiv preprint
arXiv:1804.03599, 2018.

[17] N. Slonim, “The information bottleneck: Theory and applications,” Ph.D.
dissertation, Citeseer, 2002.

[18] W. H. Equitz and T. M. Cover, “Successive refinement of information,”
IEEE Transactions on Information Theory, vol. 37, no. 2, pp. 269–275,
1991.

[19] E. Tuncel and K. Rose, “Computation and analysis of the n-layer
scalable rate-distortion function,” IEEE Transactions on Information
Theory, vol. 49, no. 5, pp. 1218–1230, 2003.

[20] T. T. Nguyen and J. Choi, “Layer-wise learning of stochastic neural net-
works with information bottleneck,” arXiv preprint arXiv:1712.01272,
2017.

[21] Q. Yang, P. Piantanida, and D. Gündüz, “The multi-layer information
bottleneck problem,” in 2017 IEEE Information Theory Workshop (ITW).
IEEE, 2017, pp. 404–408.

[22] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in neural information
processing systems, 2007, pp. 153–160.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

