CNN Steganalyzers Leverage Local Embedding Artifacts

Yassine Yousfi, Jan Butora, and Jessica Fridrich

WIFS 2021

CNNs >> **Rich Models**

- Much lower FAs
- Non-Gaussian ROC

The usual hand-waving argument

- RMs are global while CNNs have the ability to be local
- To our knowledge, this remains a conjecture
- More broadly: we wish to learn from deep learning
- Better understand how CNNs arrive at their decisions

- CNNs are both **integrators**, leveraging some form of CLT for detection, and detectors of **local embedding artifacts**
- Some algorithms (J-MiPOD) introduce numerous Locally DEtectable Artifacts (LDEAs) while others do not (J-UNIWARD)
- RMs are unable to use LDEAs

Experimental Setup

- Alaska II 256×256 QFs 75, 90, and 95 [Cogranne et al. WIFS2020]
- EfficientNet B4 (trained as in Alaska II) [Yousfi et al. WIFS2020]
- SRNet [Boroumand et al. TIFS2018]

Selected payloads

EfficientNet B4

	Payload (bpnzac)	P_{E}	MD5	wAUC
J-MiPOD	0.5	.1938	.3837	.9349
J-MiPOD	0.2	.3452	.7033	.8067
J-UNIWARD	0.5	.1967	.4220	.9304
J-UNIWARD	0.2	.3606	.7658	.7792
F5	0.2	.1835	.4292	.9292
—F5	0.05	.0866	.1248	.9827
Jsteg	0.0112	.1315	.2207	.9595

Toolbox

Integrated Gradients¹

$$\phi(f,s,b) = (s-b) \odot \int_{0}^{1} \frac{\mathrm{d}f \left(b + \alpha(s-b)\right)}{\mathrm{d}s} \,\mathrm{d}\alpha,$$

averaged over 8×8 non-overlapping blocks along the spatial dimensions to get IG block importance.

• Last Activation Map: Remove the last global pooling and use the Fully Connected layer's weights and biases as a 1×1 convolution.

¹Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic attribution for deep networks." International Conference on Machine Learning. PMLR, 2017.

Toolbox

CNN Steganalyzers Leverage Local Embedding Artifacts

Top-k insertion

• Start with a cover image, and insert the top-k stego blocks with largest IG. Thresholds are set for FP rate = 10%.

CNN Steganalyzers Leverage Local Embedding Artifacts

Top-k canceling

• Start with a stego image, and cancel the changes in the top-k stego blocks with largest IG. Thresholds are set for TP rate = 90%.

Locally Detectable Embedding Artifacts (LDEAs)

- A Locally Detectable Embedding Artifact is a stego artifact that can trigger a detection (by a CNN). Typically local to a 8×8 JPEG block.
- We show that CNNs are able to leverage these artifacts.
- We use IG block importance to find the LDEAs that can be detected by CNNs.
- Images that can be detected as stego with only a small number of changes inserted (small k) are said to have LDEAs.
- Those images transfer between CNNs: for J-MiPOD 0.5 bpnzac 82% of SRNet's LDEAs are shared with EfficientNet B4.

J-MiPOD

CNN Steganalyzers Leverage Local Embedding Artifacts

J-MiPOD LDEAs are "easy stegos" ...

EfficientNet B4 - J-MiPOD 0.5 bpnzac

J-MiPOD LDEAs are "easy stegos" for CNNs

EfficientNet B4 and DCTR+FLD - J-MiPOD 0.5 bpnzac

CNN Steganalyzers Leverage Local Embedding Artifacts

Change rate of J-MiPOD LDEAs

LDEA blocks							All blocks										
0 -	.07	.20	.22	.07	.03	.00	.00	.00	-	.04	.14	.15	.04	.01	.00	.00	.00
1 -	.20	.24	.13	.05	.01	.01	.01	.02	-	.14	.17	.10	.03	.01	.00	.00	.00
2 -	.13	.16	.12	.04	.01	.02	.03	.01	-	.08	.10	.05	.02	.00	.00	.00	.00
3-	.13	.09	.05	.01	.01	.01	.03	.03	-	.07	.05	.02	.01	.00	.00	.00	.00
4 -	.05	.05	.01	.01	.03	.01	.03	.06	-	.02	.02	.00	.00	.00	.00	.00	.00
5 -	.02	.02	.02	.02	.04	.03	.03	.04	-	.01	.00	.00	.00	.00	.00	.00	.00
6 -	.00	.02	.03	.04	.04	.03	.02	.04	-	.00	.00	.00	.00	.00	.00	.00	.00
7-	.01	.01	.01	.03	.03	.04	.03	.06	-	.00	.00	.00	.00	.00	.00	.00	.00
	Ó	1	2	3	4	5	6	7		Ó	i	2	3	4	5	6	7

Average change rate per DCT mode

- A larger change rate than the average 8×8 block of J-MiPOD.
- More changes in high frequency DCT coefficients (usually zeros).

J-UNIWARD

CNN Steganalyzers Leverage Local Embedding Artifacts

J-UNIWARD

- Fewer LDEAs than J-MiPOD
- But the ROC curve is still high for low FP rates

66116.jpg JUNI

66116.jpg JMiPOD

20734.jpg JUNI

20734.jpg JMiPOD Last Activation

Ó.

32702.jpg JUNI

32702.jpg JMiPOD

Jsteg

CNN Steganalyzers Leverage Local Embedding Artifacts

- Introduces many LDEAs.
- Most of them are related to changes increasing the absolute value of the DCT coefficient.
- 98.01% of changes in LDEA blocks increase the absolute value VS 65.06% across all blocks.

-F5, F5

- What are the CNNs looking at in the case of multiclass detection? How different is it from the binary case?
- Multiclass J-UNIWARD and bUERD

03460.jpg

bUERD changes

JUNI changes

bUERD attribution

J-UNIWARD attribution

Binary J-UNIWARD attribution

bUERD attribution

J-UNIWARD attribution

Binary J-UNIWARD attribution

bUERD attribution

J-UNIWARD attribution

Binary J-UNIWARD attribution

bUERD attribution

J-UNIWARD attribution

Binary J-UNIWARD attribution

Conclusions

We provide evidence that CNNs make use of **highly localized** information, unlike RMs

- Locally Detectable Embedding Artifacts (can even be identified visually)
- Jsteg, –F5 introduce many LDEAs due to content-creating changes $0 \rightarrow \pm 1$
- J-MiPOD introduces many more LDEAs than J-UNIWARD

CNNs also use **localized traces** to distinguish between selection channels of different embedding algorithms (bUERD vs. J-UNI)