Generalized Likelihood Ratio Test

Jessica Fridrich

EECE 566

Introduction

$$H_0: \mathbf{x} \sim p(\mathbf{x}; \boldsymbol{\theta}_0)$$

 $H_1: \mathbf{x} \sim p(\mathbf{x}; \boldsymbol{\theta}_1)$

- $oldsymbol{eta}$ $oldsymbol{ heta}_0$ (resp. $oldsymbol{ heta}_1$) is the parameter vector under H_0 (resp. under H_1)
- $oldsymbol{ heta}_0$ and $oldsymbol{ heta}_1$ may be different parameters
- Previous lecture = Bayesian approach (assign prior pdf's to the parameters under both H_0 and H_1 , $p(\theta_0)$ and $p(\theta_1)$, and integrate)

Generalized likelihood ratio test (GLRT)

- Convert composite test to simple by plugging into the pdf's MLE estimates of the parameters
- Test statistic

(GLRT):
$$L_G(\mathbf{x}) = \frac{p(\mathbf{x}; \hat{\boldsymbol{\theta}}_1, H_1)}{p(\mathbf{x}; \hat{\boldsymbol{\theta}}_0, H_0)} \lesssim \gamma$$

- $oldsymbol{\hat{ heta}_i}$ is the maximum likelihood estimate (MLE) of the parameters under H_i
- MLE: $\hat{\boldsymbol{\theta}_i} = \operatorname{argmax}_{\boldsymbol{\theta}} p(\mathbf{x}; \boldsymbol{\theta}, H_i)$, maximizes the likelihood under H_i

Generalized likelihood ratio test (GLRT)

GLRT can also be written as

$$\text{(GLRT): } L_G(\mathbf{x}) = \frac{\max_{\boldsymbol{\theta}_1} p(\mathbf{x}; \boldsymbol{\theta}_1, H_1)}{\max_{\boldsymbol{\theta}_0} p(\mathbf{x}; \boldsymbol{\theta}_0, H_0)} \quad \mathop{\lessgtr}\limits_{1}^{0} \quad \gamma$$

• Suppose pdf under H_0 is completely known

$$\begin{split} \text{(GLRT): } L_G(\mathbf{x}) &= \frac{\max_{\boldsymbol{\theta}_1} p(\mathbf{x}; \boldsymbol{\theta}_1, H_1)}{p(\mathbf{x}; H_0)} \quad \stackrel{0}{\lessgtr} \quad \gamma \\ L_G(\mathbf{x}) &= \max_{\boldsymbol{\theta}_1} \frac{p(\mathbf{x}; \boldsymbol{\theta}_1, H_1)}{p(\mathbf{x}; H_0)} \quad \stackrel{0}{\lessgtr} \quad \gamma \\ L_G(\mathbf{x}) &= \max_{\boldsymbol{\theta}_1} L(\mathbf{x}; \boldsymbol{\theta}_1) \quad \stackrel{0}{\lessgtr} \quad \gamma \end{split}$$

ullet Over all possible parameters $m{ heta}_1$ use the largest likelihood ratio test as test statistic.

Example: Detection of unknown DC level in WGN (GLRT)

$$H_0: x_i = \xi_i$$

 $H_1: x_i = A + \xi_i$

 $\xi_i \sim \mathcal{N}(0, \sigma^2)$, iid with **known** σ^2

A is **unknown**, two-sided test

• MLE estimator of A:

under
$$H_1: x_i \sim \mathcal{N}(A, \sigma^2)$$

• From lecture on MLE: $\hat{A} = \overline{\mathbf{x}}$, the sample mean

Example: Detection of unknown DC level in WGN (GLRT)

$$(\mathsf{GLRT}) \colon L_G(\mathbf{x}) = \frac{p(\mathbf{x}; A, H_1)}{p(\mathbf{x}; H_0)} \stackrel{0}{\lessgtr} \gamma$$

$$\frac{(2\pi\sigma^2)^{-n/2} \exp\left(\frac{-1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{\mathbf{x}})^2\right)}{(2\pi\sigma^2)^{-n/2} \exp\left(\frac{-1}{2\sigma^2} \sum_{i=1}^n x_i^2\right)} \stackrel{0}{\lessgtr} \gamma$$

$$\ln L_G(\mathbf{x}) = \frac{-1}{2\sigma^2} \left(\sum_{i=1}^n x_i^2 - 2\overline{\mathbf{x}} \sum_{i=1}^n x_i + n\overline{\mathbf{x}}^2 - \sum_{i=1}^n x_i^2\right) \stackrel{0}{\lessgtr} \ln \gamma$$

$$\frac{-1}{2\sigma^2} \left(-2n\overline{\mathbf{x}}^2 + n\overline{\mathbf{x}}^2\right) = \frac{n\overline{\mathbf{x}}^2}{2\sigma^2} \stackrel{0}{\lessgtr} \ln \gamma$$

Example: Detection of unknown DC level in WGN (GLRT)

$$2 \ln L_G(\mathbf{x}) = \frac{n\overline{\mathbf{x}}^2}{\sigma^2} \quad \stackrel{0}{\leqslant} \quad \ln \gamma$$
$$|\overline{\mathbf{x}}| \quad \stackrel{0}{\leqslant} \quad \sqrt{\frac{2\sigma^2}{n} \ln \gamma} = \gamma'$$

- This is the ad-hoc detector studied before
- We know its performance and compared it to clairvoyant detector

$$H_0: x_i = \xi_i$$

$$H_1: x_i = A + \xi_i$$

$$\xi_i \sim \mathcal{N}(0, \sigma^2)$$
, iid, σ^2 is **unknown**

A is **unknown**, two-sided test

$$\text{(GLRT)} \colon L_G(\mathbf{x}) = \frac{p(\mathbf{x}; \hat{A}, \hat{\sigma}_1, H_1)}{p(\mathbf{x}; \hat{\sigma}_0, H_0)} \quad \mathop{\leqslant}\limits_{1}^{0} \quad \gamma$$

- $\hat{A}, \hat{\sigma}_1$ MLE estimates under H_1
- $\hat{\sigma}_0$ MLE estimate under H_0

• Under H_0

$$x_i \sim \mathcal{N}(0, \sigma^2)$$

• MLE estimator of σ^2 is:

$$\hat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n x_i^2$$

$$p(\mathbf{x}; \hat{\sigma}_0^2, H_0) = (2\pi\hat{\sigma}_0^2)^{-n/2} \exp\left(\frac{-1\sum_{i=1}^n x_i^2}{2\hat{\sigma}_0^2}\right)$$

$$= (2\pi\hat{\sigma}_0^2)^{-n/2} \exp\left(\frac{-1\sum_{i=1}^n x_i^2}{2\frac{1}{n}\sum_{i=1}^n x_i^2}\right)$$

$$p(\mathbf{x}; \hat{\sigma}_0^2, H_0) = (2\pi\hat{\sigma}_0^2)^{-n/2} \exp\left(-n/2\right)$$

• Under H_1

$$x_i \sim \mathcal{N}(A, \sigma^2)$$

• MLE estimator of A is:

$$\hat{A} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{\mathbf{x}}$$

• MLE estimator of σ^2 is:

$$\hat{\sigma}_1^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{\mathbf{x}})^2$$

$$p(\mathbf{x}; \hat{A}, \hat{\sigma}_{1}^{2}, H_{1}) = (2\pi\hat{\sigma}_{1}^{2})^{-n/2} \exp\left(\frac{-1\sum_{i=1}^{n}(x_{i} - A)^{2}}{2\hat{\sigma}_{1}^{2}}\right)$$

$$= (2\pi\hat{\sigma}_{1}^{2})^{-n/2} \exp\left(\frac{-1\sum_{i=1}^{n}(x_{i} - \overline{\mathbf{x}})^{2}}{2\frac{1}{n}\sum_{i=1}^{n}(x_{i} - \overline{\mathbf{x}})^{2}}\right)$$

$$p(\mathbf{x}; \hat{A}, \hat{\sigma}_{1}^{2}, H_{1}) = (2\pi\hat{\sigma}_{1}^{2})^{-n/2} \exp\left(-n/2\right)$$

Note that:

$$\hat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{\mathbf{x}} + \overline{\mathbf{x}})^2$$

$$= \frac{1}{n} \sum_{i=1}^n \left[(x_i - \overline{\mathbf{x}})^2 + 2\overline{\mathbf{x}}(x_i - \overline{\mathbf{x}}) + \overline{\mathbf{x}}^2 \right]$$

$$= \frac{1}{n} \sum_{i=1}^n (x_i - \overline{\mathbf{x}})^2 + 2\overline{\mathbf{x}} \frac{1}{n} \left[\sum_{i=1}^n x_i - n\overline{\mathbf{x}} \right] + \frac{n}{n} \overline{\mathbf{x}}^2$$

$$\hat{\sigma}_0^2 = \hat{\sigma}_1^2 + \overline{\mathbf{x}}^2$$

$$L_G(\mathbf{x}) = \frac{p(\mathbf{x}; \hat{A}, \hat{\sigma}_1, H_1)}{p(\mathbf{x}|\hat{\sigma}_0, H_0)}$$

$$= \frac{(2\pi\hat{\sigma}_1^2)^{-n/2}}{(2\pi\hat{\sigma}_0^2)^{-n/2}}$$

$$2 \ln L_G(\mathbf{x}) = n \ln \frac{\hat{\sigma}_0^2}{\hat{\sigma}_1^2}$$

$$= n \ln \frac{\hat{\sigma}_1^2 + \overline{\mathbf{x}}^2}{\hat{\sigma}_1^2}$$

$$2 \ln L_G(\mathbf{x}) = n \ln \left(1 + \frac{\overline{\mathbf{x}}^2}{\hat{\sigma}_1^2}\right)$$

• $\ln(1+x)$ is monotone in $x \Rightarrow$ an equivalent test statistic is:

$$T(\mathbf{x}) = \frac{\overline{\mathbf{x}}^2}{\hat{\sigma}_1^2}$$

• We say that the GLRT has normalized the test statistic by $\hat{\sigma}_1^2$ (compared to the known σ^2 case) to allow the threshold to be determined

• Note that we can write: $\xi_i = \sigma u_i$ where $u_i \sim \mathcal{N}(0,1)$

$$\begin{array}{rcl} \operatorname{under} \, H_0: T(\mathbf{x}) & = & \frac{\overline{\mathbf{x}}^2}{\hat{\sigma}_1^2} \\ & = & \frac{\left(\frac{1}{n} \sum_{i=1}^n \xi_i\right)^2}{\frac{1}{n} \sum_{i=1}^n (\xi_i - \overline{\boldsymbol{\xi}})^2} \\ & = & \frac{\left(\sigma \sum_{i=1}^n u_i\right)^2}{\sum_{i=1}^n (\sigma u_i - \sigma/n \sum_{i=1}^n u_i)^2} \\ T(\mathbf{x}) & = & \frac{\overline{\mathbf{u}}^2}{\sum_{i=1}^n (u_i - \overline{\mathbf{u}})^2} \end{array}$$

- Under H_0 : $T(\mathbf{x})$ has a pdf that does not depend on $\sigma^2 \implies$ we can set the threshold for a given P_{FA} , albeit only numerically
- ullet For large n: Large Data Records (LDR), asymptotically $T(\mathbf{x})$ has a closed-form pdf