Data Augmentation for JPEG Steganalysis

Tomer Itzhaki, Yassine Yousfi, and Jessica Fridrich

WIFS 2021

Introduction

- CNNs >> Rich models.
- But more data hungry \implies Need to augment training datasets.
- For steganalysis = important to augment without destroying the stego signal.
- The typical augmentations used are rotations and flips (D4).
- Can we do better with other augmentations?
- Note that RMs also used "augmentation-like" trick feature symmetrization.

Experimental setting

- Alaska II 256×256 QFs 75, 90, and 95 [Cogranne et al. WIFS2020].
- EfficientNet B3 (trained as in Alaska II) [Yousfi et al. WIFS2020].
- Color J-UNIWARD using CCM.
- Grayscale J-MiPOD and nsF5.

- Can significantly increase performance with little to no cost using data augmentation beyond D4.
- Up to 3% in accuracy and 5% in MD5.
- Smaller datasets are likely to benefit more from the studied augmentation.

"Dropout" augmentations

- Randomly set a set of pixels to zero.
- Usually rectangles/squares.
- Simulates occlusions.

Coarse dropout

Data Augmentation for JPEG Steganalysis

Grid dropout

Random grid dropout

"Channel" augmentations

- For color steganography.
- Augmenting using channels (RGB).
- Simulates images with different color compositions.

Channel shuffle

To gray

"Mixing" augmentations

- Mixing two images from different classes.
- Changing the label accordingly to a soft-label.

BitMix

BitMix

$$X = M \odot C + (1 - M) \odot S$$

$$\lambda = \frac{\|M \odot C - M \odot S\|_1}{\|C - S\|_1}$$

$$y_X = (\lambda, 1 - \lambda)$$

M binary mask, C, S cover, stego image, y_X soft label

ConvexMix

$$X = \lambda C + (1 - \lambda)S$$

$$y_X = (\lambda, 1 - \lambda)$$

C, S cover, stego image, y_X soft label

Data Augmentation for JPEG Steganalysis

- Sample different stego images from the embedding simulator.
- Inflates the stego class.
- Requires sampling stego images on the fly pre-computing change rate maps.

Results

Results

Data Augmentation for JPEG Steganalysis

Results

nsF5

Low data regime

Data Augmentation	Accuracy	MD5	FP80	wAUC
66,000 training images				
Baseline, YCrCb	95.3841	0.0232	0.0016	0.9966
CoarseDropout	96.5672	0.0158	0.0013	0.9975
10,000 training images				
Baseline, YCrCb	0.8881	0.1701	0.0335	0.9797
CoarseDropout	0.9029	0.1488	0.0293	0.9812

Conclusions and future directions

Summary

- Beyond D4, other augmentations can give a significant boost (up to 3% in accuracy and 5% in MD5)
- More beneficial in low data regimes.
- Using all augmentations increases performance but not significantly when compared to the best single augmentation.

Future

- More augmentations, e.g. adapt Pixels-off [Yedrouj et al. IH2020] to the JPEG domain or to an on-the-fly augmentation.
- Augmentations to be studied together with data scalability laws [Ruiz, Chaumont et al. ICPR2021].